An effectiveness model for an indirect evaporative cooling (IEC) system: Comparison of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach

被引:78
|
作者
Kiran, T. Ravi [1 ]
Rajput, S. P. S. [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Mech Engn, Bhopal 462051, Madhya Pradesh, India
关键词
Indirect evaporative cooler; Effectiveness; Training; ANN; ANFIS; FIS; HEAT-EXCHANGER; PERFORMANCE PREDICTION;
D O I
10.1016/j.asoc.2011.01.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing an optimal air conditioning system needs the knowledge of its performance. Soft computing tools like fuzzy inference system (FIS), artificial neural networks (ANN) and adaptive neuro fuzzy inference (ANFIS) provides simple but powerful way for predicting the performance of an IEC. In this paper both analytical as well as soft computing approach is used in predicting the performance of an IEC. All the models are trained with simulation data and are then compared and validated using experimental data from the literature. It was found that of the three models, ANN model gives the most accurate results using the training algorithm Levenberg-Marquardt (LM). The statistical values i.e. R-2, RMS, cov, MSE and AIC using ANN for the prediction of primary air outlet temperature were 0.9999, 0.1830, 0.7811, 0.0335 and -3.38, and for effectiveness were 0.9999, 0.00335, 0.5212, 1.119E-05 and -11.38 respectively. This work shows the advantage of ANN over ANFIS and FIS for modeling IEC. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3525 / 3533
页数:9
相关论文
共 50 条
  • [1] Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS plus ANN) and FIS with adaptive neuro-fuzzy inference system (FIS plus ANFIS) for inventory control
    Aengchuan, Prasert
    Phruksaphanrat, Busaba
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (04) : 905 - 923
  • [2] A comparative study of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models in distribution system with nondeterministic inputs
    Okwu, Modestus O.
    Adetunji, Olufemi
    INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT, 2018, 10
  • [3] A Hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) Approach for Professional Bloggers Classification
    Asim, Yousra
    Raza, Basit
    Malik, Ahmad Kamran
    Shahid, Ahmad R.
    Faheem, Muhammad
    Kumar, Yogan Jaya
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 88 - 93
  • [4] Comparative study between Fuzzy Inference System, Adaptive Neuro-Fuzzy Inference System and Neural Network for Healthcare Monitoring
    Krizea, Maria
    Gialelis, John
    Koubias, Stavros
    2019 8TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2019, : 616 - 619
  • [5] An adaptive neuro-fuzzy inference system (ANFIS) model for thermophysical properties of new refrigerant
    Sencan, Arzu
    Kose, Ismail Ilke
    Selbas, Resat
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 27 (02): : 275 - 286
  • [6] Multioutput Adaptive Neuro-fuzzy Inference System
    Benmiloud, T.
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 94 - 98
  • [7] Bayesian inference using an adaptive neuro-fuzzy inference system
    Knaiber, Mohammed
    Alawieh, Leen
    FUZZY SETS AND SYSTEMS, 2023, 459 : 43 - 66
  • [8] Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
    Al-Hmouz, Ahmed
    Shen, Jun
    Al-Hmouz, Rami
    Yan, Jun
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (03): : 226 - 237
  • [9] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [10] Evaluation of Adaptive Neuro-Fuzzy Inference System with Artificial Neural Network and Fuzzy Logic in Diagnosis of Alzheimer Disease
    Kour, Haneet
    Manhas, Jatinder
    Sharma, Vinod
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 1041 - 1046