Exploratory Study of Machine Learning Techniques for Supporting Failure Prediction

被引:17
|
作者
Campos, Joao R. [1 ]
Vieira, Marco [1 ]
Costa, Ernesto [1 ]
机构
[1] Univ Coimbra, DEI CISUC, Coimbra, Portugal
来源
2018 14TH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2018) | 2018年
基金
欧盟地平线“2020”;
关键词
Dependability; Failure Prediction; Machine Learning; Classification; ONLINE;
D O I
10.1109/EDCC.2018.00014
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The growing complexity of software makes it difficult or even impossible to detect all faults before deployment, and such residual faults eventually lead to failures at runtime. Online Failure Prediction (OFP) is a technique that attempts to avoid or mitigate such failures by predicting their occurrence based on the analysis of past data and the current state of a system. Given recent technological developments, Machine Learning (ML) algorithms have shown their ability to adapt and extract knowledge in a variety of complex problems, and thus have been used for OFP. Still, they are highly dependent on the problem at hand, and their performance can be influenced by different factors. The problem with most works using ML for OFP is that they focus only on a small set of prediction algorithms and techniques, although there is no comprehensive study to support their choice. In this paper, we present an exploratory analysis of various ML algorithms and techniques on a dataset containing failure data. The results show that, for the same data, different algorithms and techniques directly influence the prediction performance and thus should be carefully selected.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [31] Application of machine learning techniques for churn prediction in the telecom business
    Krishna, Raji
    Jayanthi, D.
    Sam, D. S. Shylu
    Kavitha, K.
    Maurya, Naveen Kumar
    Benil, T.
    RESULTS IN ENGINEERING, 2024, 24
  • [32] Using machine learning techniques for rising star prediction in basketball
    Mahmood, Zafar
    Daud, Ali
    Abbasi, Rabeeh Ayaz
    KNOWLEDGE-BASED SYSTEMS, 2021, 211
  • [33] A systematic review of machine learning techniques for software fault prediction
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2015, 27 : 504 - 518
  • [34] Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques
    Islam M.M.
    Haque M.R.
    Iqbal H.
    Hasan M.M.
    Hasan M.
    Kabir M.N.
    SN Computer Science, 2020, 1 (5)
  • [35] Hospital Readmission Prediction using Machine Learning Techniques A Comparative Study
    Alajmani, Samah
    Elazhary, Hanan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 212 - 220
  • [36] Exploratory Data Analysis of Heart Disease Prediction using Machine Learning Techniques-RS Algorithm
    Vibha, M. B.
    Sneha, S. R.
    Kiran, U.
    Kiran, Y.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 209 - 216
  • [37] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Rahul Katarya
    Sunit Kumar Meena
    Health and Technology, 2021, 11 : 87 - 97
  • [38] Machine Learning Techniques for Heart Disease Prediction: A Comparative Study and Analysis
    Katarya, Rahul
    Meena, Sunit Kumar
    HEALTH AND TECHNOLOGY, 2021, 11 (01) : 87 - 97
  • [39] On the Applicability of Machine Learning-based Online Failure Prediction for Modern Complex Systems
    Campos, Joao R.
    Costa, Ernesto
    Vieira, Marco
    2022 18TH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2022), 2022, : 49 - 56
  • [40] Risk prediction of diabetic nephropathy using machine learning techniques: A pilot study with secondary data
    Maniruzzaman, Md.
    Islam, Md. Merajul
    Rahman, Md. Jahanur
    Hasan, Md. Al Mehedi
    Shin, Jungpil
    DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2021, 15 (05)