Exploratory Study of Machine Learning Techniques for Supporting Failure Prediction

被引:17
|
作者
Campos, Joao R. [1 ]
Vieira, Marco [1 ]
Costa, Ernesto [1 ]
机构
[1] Univ Coimbra, DEI CISUC, Coimbra, Portugal
来源
2018 14TH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2018) | 2018年
基金
欧盟地平线“2020”;
关键词
Dependability; Failure Prediction; Machine Learning; Classification; ONLINE;
D O I
10.1109/EDCC.2018.00014
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The growing complexity of software makes it difficult or even impossible to detect all faults before deployment, and such residual faults eventually lead to failures at runtime. Online Failure Prediction (OFP) is a technique that attempts to avoid or mitigate such failures by predicting their occurrence based on the analysis of past data and the current state of a system. Given recent technological developments, Machine Learning (ML) algorithms have shown their ability to adapt and extract knowledge in a variety of complex problems, and thus have been used for OFP. Still, they are highly dependent on the problem at hand, and their performance can be influenced by different factors. The problem with most works using ML for OFP is that they focus only on a small set of prediction algorithms and techniques, although there is no comprehensive study to support their choice. In this paper, we present an exploratory analysis of various ML algorithms and techniques on a dataset containing failure data. The results show that, for the same data, different algorithms and techniques directly influence the prediction performance and thus should be carefully selected.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
  • [21] Cloud failure prediction based on traditional machine learning and deep learning
    Tengku Nazmi Tengku Asmawi
    Azlan Ismail
    Jun Shen
    Journal of Cloud Computing, 11
  • [22] Cloud failure prediction based on traditional machine learning and deep learning
    Asmawi, Tengku Nazmi Tengku
    Ismail, Azlan
    Shen, Jun
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [23] A Comprehensive Review on Machine Learning Techniques for Protein Family Prediction
    Idhaya, T.
    Suruliandi, A.
    Raja, S. P.
    PROTEIN JOURNAL, 2024, 43 (02) : 171 - 186
  • [24] An analytical method for diseases prediction using machine learning techniques
    Nilashi, Mehrbakhsh
    bin Ibrahim, Othman
    Ahmadi, Hossein
    Shahmoradi, Leila
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 106 : 212 - 223
  • [25] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    JOURNAL OF CONTROLLED RELEASE, 2022, 352 : 961 - 969
  • [26] EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES
    Al-Batah, Mohammad Subhi
    Alzyoud, Mazen
    Alazaidah, Raed
    Toubat, Malek
    Alzoubi, Haneen
    Olaiyat, Areej
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (04): : 357 - 369
  • [27] Energy Shortage Failure Prediction in Photovoltaic Standalone Installations by Using Machine Learning Techniques
    Guillen-Asensio, Alejandro
    Sanz-Gorrachategui, Ivan
    Bono-Nuez, Antonio
    Bernal, Carlos
    Miguel Sanz-Alcaine, Jose
    Jose Perez-Cebolla, Francisco
    IEEE ACCESS, 2021, 9 : 158660 - 158671
  • [28] Effective Heart Disease Prediction Using Machine Learning Techniques
    Bhatt, Chintan M.
    Patel, Parth
    Ghetia, Tarang
    Mazzeo, Pier Luigi
    ALGORITHMS, 2023, 16 (02)
  • [29] Assessment and prediction of spine surgery invasiveness with machine learning techniques
    Campagner, Andrea
    Berjano, Pedro
    Lamartina, Claudio
    Langella, Francesco
    Lombardi, Giovanni
    Cabitza, Federico
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [30] Exploring Machine Learning Techniques for Coronary Heart Disease Prediction
    Khdair, Hisham
    Dasari, Naga M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 28 - 36