On p-adic Differential Equations with Separation of Variables

被引:8
作者
Lairez, Pierre [1 ]
Vaccon, Tristan [2 ]
机构
[1] Tech Univ Berlin, Berlin, Germany
[2] JSPS Rikkyo Univ, Tokyo, Japan
来源
PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016) | 2016年
关键词
Ordinary differential equation; p-adic numbers; Newton iteration; numerical stability; differential precision;
D O I
10.1145/2930889.2930912
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Several algorithms in computer algebra involve the computation of a power series solution of a given ordinary differential equation. Over finite fields, the problem is often lifted in an approximate p-adic setting to be well-posed. This raises precision concerns: how much precision do we need on the input to compute the output accurately? In the case of ordinary differential equations with separation of variables, we make use of the recent technique of differential precision to obtain optimal bounds on the stability of the Newton iteration. The results apply, for example, to algorithms for manipulating algebraic numbers over finite fields, for computing isogenies between elliptic curves or for deterministically finding roots of polynomials in finite fields. The new bounds lead to significant speedups in practice.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 11 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]   Fast algorithms for computing isogenies between elliptic curves [J].
Bostan, A. ;
Morain, F. ;
Salvy, B. ;
Schost, E. .
MATHEMATICS OF COMPUTATION, 2008, 77 (263) :1755-1778
[3]  
Bostan A., 2005, P MEGA PORT CONT IT
[4]  
Bostan A., 2015, P ISSAC BATH UK, P101, DOI [10.1145/2755996.2756655, DOI 10.1145/2755996.2756655]
[5]   Tracking p-adic precision [J].
Caruso, Xavier ;
Roe, David ;
Vaccon, Tristan .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 :274-294
[6]   Deterministic root finding over finite fields using Graeffe transforms [J].
Grenet, Bruno ;
van der Hoeven, Joris ;
Lecerf, Gregoire .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2016, 27 (03) :237-257
[7]   FAST POLYNOMIAL FACTORIZATION AND MODULAR COMPOSITION [J].
Kedlaya, Kiran S. ;
Umans, Christopher .
SIAM JOURNAL ON COMPUTING, 2011, 40 (06) :1767-1802
[8]   COMPUTING RECIPROCALS OF POWER-SERIES [J].
KUNG, HT .
NUMERISCHE MATHEMATIK, 1974, 22 (05) :341-348
[9]  
Lercier R., 2008, Journal de Theorie des Nombres de Bordeaux, V20, P783
[10]  
SCHONHAGE A, 1993, LECT NOTES COMPUTER, V700, P410, DOI DOI 10.1007/3-540-56939-190