Classification of Regular Embeddings of Complete Multipartite Graphs

被引:1
作者
Kwon, Young Soo [1 ]
机构
[1] Yeungnam Univ, Dept Math, Kyeongsan 712749, South Korea
基金
新加坡国家研究基金会;
关键词
graph embeddings; regular embeddings; regular map; complete multipartite graphs; COMPLETE BIPARTITE GRAPHS; N-DIMENSIONAL CUBES; ORIENTABLE SURFACES; MAPS;
D O I
10.1002/jgt.22136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-cell embedding of a graph Gamma into a closed (orientable or nonorientable) surface is called regular if its automorphism group acts regularly on the flags. In this article, we classify the regular embeddings of the complete multipartite graph K-n,K-...,K-n. We show that if the number of partite sets is greater than 3, there exists no such embedding; and if the number of partite sets is 3, for any n, there exist one orientable regular embedding and one nonorientable regular embedding of K-n,K-n,K-n up to isomorphism. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 50 条
  • [41] ON INCIDENCE COLORING OF COMPLETE MULTIPARTITE AND SEMICUBIC BIPARTITE GRAPHS
    Janczewski, Robert
    Malafiejski, Michal
    Malafiejska, Anna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 107 - 119
  • [42] Some Chromatic Equivalence Classes of Complete Multipartite Graphs
    Lau, Gee-Choon
    Zhao, Haixing
    UTILITAS MATHEMATICA, 2017, 105 : 75 - 85
  • [43] Different Types of Isomorphisms of Drawings of Complete Multipartite Graphs
    Aichholzer, Oswin
    Vogtenhuber, Birgit
    Weinberger, Alexandra
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 34 - 50
  • [45] Heterochromatic tree partition number in complete multipartite graphs
    Jin, Zemin
    Zhu, Peipei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 28 (02) : 321 - 340
  • [46] On the Number of Genus Embeddings of Complete Bipartite Graphs
    Shao, Zeling
    Liu, Yanpei
    Li, Zhiguo
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1909 - 1919
  • [47] Classification of regular embeddings of hypercubes of odd dimension
    Du, Shao-Fei
    Kwak, Jin Ho
    Nedela, Roman
    DISCRETE MATHEMATICS, 2007, 307 (01) : 119 - 124
  • [48] The Total Chromatic Number of Complete Multipartite Graphs with Low Deficiency
    Dalal, Aseem
    Rodger, C. A.
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2159 - 2173
  • [49] The Total Chromatic Number of Complete Multipartite Graphs with Low Deficiency
    Aseem Dalal
    C. A. Rodger
    Graphs and Combinatorics, 2015, 31 : 2159 - 2173
  • [50] Embedding complete multipartite graphs into Cartesian product of paths and cycles
    Rajan, R. Sundara
    Shantrinal, A. Arul
    Rajalaxmi, T. M.
    Fan, Jianxi
    Fan, Weibei
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 507 - 525