Self-Assembly of Oriented Antibody-Decorated Metal-Organic Framework Nanocrystals for Active-Targeting Applications

被引:52
作者
Alt, Karen [1 ]
Carraro, Francesco [2 ]
Jap, Edwina [1 ]
Linares-Moreau, Mercedes [2 ]
Ricco, Raffaele [2 ,3 ]
Righetto, Marcello [4 ]
Bogar, Marco [5 ]
Amenitsch, Heinz [5 ]
Hashad, Rania A. [1 ,6 ]
Doonan, Christian [7 ]
Hagemeyer, Christoph E. [1 ]
Falcaro, Paolo [2 ]
机构
[1] Monash Univ, Australian Ctr Blood Dis, Cent Clin Sch, Melbourne, Vic 3004, Australia
[2] Graz Univ Technol, Inst Phys & Theoret Chem, A-8010 Graz, Austria
[3] Asian Inst Technol AIT, Sch Engn & Technol, Dept Ind Syst Engn, POB 4, Pathum Thani 12120, Thailand
[4] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, 21 Nanyang Link, Singapore 637371, Singapore
[5] Graz Univ Technol, Inst Inorgan Chem, A-8010 Graz, Austria
[6] Ain Shams Univ, Fac Pharm, Dept Pharmaceut & Ind Pharm, Cairo 11566, Egypt
[7] Univ Adelaide, Fac Sci, Sch Phys Sci, Adelaide, SA 5005, Australia
基金
英国医学研究理事会;
关键词
antibodies; crystallization; metal-organic frameworks; self-assembly; targeting; ZEOLITIC IMIDAZOLATE FRAMEWORK-8; ZIF-8;
D O I
10.1002/adma.202106607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn-2(mIM)(2)(CO3), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.
引用
收藏
页数:7
相关论文
共 44 条
[1]   3D Printing of Monolithic Capillarity-Driven Microfluidic Devices for Diagnostics [J].
Achille, Clement ;
Parra-Cabrera, Cesar ;
Dochy, Ruben ;
Ordutowski, Henry ;
Piovesan, Agnese ;
Piron, Pieter ;
Van Looy, Lore ;
Kushwaha, Shashwat ;
Reynaerts, Dominiek ;
Verboven, Pieter ;
Nicolai, Bart ;
Lammertyn, Jeroen ;
Spasic, Dragana ;
Ameloot, Rob .
ADVANCED MATERIALS, 2021, 33 (25)
[2]   Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity [J].
Arora, Jayant ;
Hu, Yue ;
Esfandiary, Reza ;
Sathish, Hasige A. ;
Bishop, Steven M. ;
Joshi, Sangeeta B. ;
Middaugh, C. Russell ;
Volkin, David B. ;
Weis, David D. .
MABS, 2016, 8 (08) :1561-1574
[3]   Carbohydrates@MOFs [J].
Astria, Efwita ;
Thonhofer, Martin ;
Ricco, Raffaele ;
Liang, Weibin ;
Chemelli, Angela ;
Tarzia, Andrew ;
Alt, Karen ;
Hagemeyer, Christoph E. ;
Rattenberger, Johannes ;
Schroettner, Hartmuth ;
Wrodnigg, Tanja ;
Amenitsch, Heinz ;
Huang, David M. ;
Doonan, Christian J. ;
Falcaro, Paolo .
MATERIALS HORIZONS, 2019, 6 (05) :969-977
[4]   Carbonate-Based Zeolitic Imidazolate Framework for Highly Selective CO2 Capture [J].
Basnayake, Sajani A. ;
Su, Jie ;
Zou, Xiadong ;
Balkus, Kenneth J., Jr. .
INORGANIC CHEMISTRY, 2015, 54 (04) :1816-1821
[5]   Immunosensing of Atrazine with Antibody-Functionalized Cu-MOF Conducting Thin Films [J].
Bhardwaj, Sanjeev K. ;
Bhardwaj, Neha ;
Mohanta, Girish C. ;
Kumar, Pawan ;
Sharma, Amit L. ;
Kim, Ki-Hyun ;
Deep, Akash .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (47) :26124-26130
[6]   Phase dependent encapsulation and release profile of ZIF-based biocomposites [J].
Carraro, F. ;
Velasguez-Hernandez, M. de J. ;
Astria, E. ;
Liang, W. ;
Twight, L. ;
Parise, C. ;
Ge, M. ;
Huang, Z. ;
Ricco, R. ;
Zou, X. ;
Villanova, L. ;
Kappe, C. O. ;
Doonan, C. ;
Falcaro, P. .
CHEMICAL SCIENCE, 2020, 11 (13) :3397-3404
[7]   Next generation antibody drugs: pursuit of the 'high-hanging fruit' [J].
Carter, Paul J. ;
Lazar, Greg A. .
NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (03) :197-223
[8]   Potent antibody therapeutics by design [J].
Carter, PJ .
NATURE REVIEWS IMMUNOLOGY, 2006, 6 (05) :343-357
[9]   Modulating the Biofunctionality of Metal-Organic Framework-Encapsulated Enzymes through Controllable Embedding Patterns [J].
Chen, Guosheng ;
Kou, Xiaoxue ;
Huang, Siming ;
Tong, Linjing ;
Shen, Yujian ;
Zhu, Wangshu ;
Zhu, Fang ;
Ouyang, Gangfeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (07) :2867-2874
[10]   Near-Infrared Triggered Cascade of Antitumor Immune Responses Based on the Integrated Core-Shell Nanoparticle [J].
Cheng, Qian ;
Gao, Fan ;
Yu, Wu-Yang ;
Zou, Mei-Zhen ;
Ding, Xing-Lan ;
Li, Min-Jie ;
Cheng, Si-Xue ;
Zhang, Xian-Zheng .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (50)