Crop Classification Based on Lightened Convolutional Neural Networks in Multispectral Images

被引:0
|
作者
Shi, Jiawei [1 ,2 ,3 ]
Zhang, Haopeng [1 ,2 ,3 ]
Jiang, Zhiguo [1 ,2 ,3 ]
Meng, Gang [4 ]
机构
[1] Beihang Univ, Sch Astronaut, AImage Proc Ctr, Beijing 102206, Peoples R China
[2] Minist Educ, Key Lab Spacecraft Design Optimizat & Dynam Simul, Beijing 102206, Peoples R China
[3] Beijing Key Lab Digital Media, Beijing 102206, Peoples R China
[4] Beijing Inst Remote Sensing Informat, Beijing 100192, Peoples R China
来源
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV | 2019年 / 11155卷
基金
中国国家自然科学基金;
关键词
crop classification; multispectral remote sensing images; convolutional neural networks;
D O I
10.1117/12.2532747
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Crop classification is a representative problem in multispectral remote sensing image (RSI) classification, and has significance in country food security, ecological security, production estimate, crop growth supervision, and so on. It has attracted increasing attention of many researchers around the world especially after the development of convolutional neural networks (CNN). General CNN-based multispectral RSI classification methods may be not suitable for labeled samples with limited numbers and areas. Other pixel-based classification methods are always affected by noise and ignore spatial information. Focusing on these problems, this paper presents an approach based on lightened CNN for crop classification with a small number of tiny size labeled samples in multispectral images. The contribution of this work is to construct a lightened CNN model for crop classification with small samples in multispectral image. It avoids overfitting of deep CNN and reduces the requirement for the size of training samples. We adopt two-layer fully convolutional network (FCN) to extract features. The first layer uses a convolutional kernel of size 1 and outputs 16-band feature map to obtain spectral band information. Spatial information is extracted in the sequential layer using convolutional kernel of size 3, step 1 and padding 1. Thus the feature map after FCN and the labeled area have the same size. Finally, we use a fully connected layer and a softmax classifier for classification. Our experiment was conducted on 8-band multispectral image of size 50362-by-17810 pixels. There are 5 classes in the multispectral image, namely rice, soy, corn, non-crop, and uncertainty. The experimental result which achieves 86.28% accuracy indicates the good performance of our network for crop classification in multispectral RSIs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Novel convolutional neural networks for efficient classification of rotated and scaled images
    Tarasiuk, Pawel
    Szczepaniak, Piotr S.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13) : 10519 - 10532
  • [42] Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images
    Simic, Svetlana
    Simic, Svetislav D.
    Bankovic, Zorana
    Ivkov-Simic, Milana
    Villar, Jose R.
    Simic, Dragan
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (04) : 649 - 663
  • [43] Atrial fibrillation classification based on convolutional neural networks
    Lee, Kwang-Sig
    Jung, Sunghoon
    Gil, Yeongjoon
    Son, Ho Sung
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [44] Convolutional Neural Networks based Pornographic Image Classification
    Zhou, KaiLong
    Zhou, Li
    Geng, Zhen
    Zhang, Jing
    Li, Xiao Guang
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 206 - 209
  • [45] Material classification technology based on Convolutional neural networks
    Li, Dailin
    Li, Guilei
    Wei, Baojun
    Yang, Dan
    Wang, Ning
    Zhu, Huafeng
    Ni, Hao
    FIFTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2019, 11023
  • [46] Atrial fibrillation classification based on convolutional neural networks
    Kwang-Sig Lee
    Sunghoon Jung
    Yeongjoon Gil
    Ho Sung Son
    BMC Medical Informatics and Decision Making, 19
  • [47] Automatic Classification of Requirements Based on Convolutional Neural Networks
    Winkler, Jonas
    Vogelsang, Andreas
    2016 IEEE 24TH INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW), 2016, : 39 - 45
  • [48] Glomerulus Classification and Detection Based on Convolutional Neural Networks
    Gallego, Jaime
    Pedraza, Anibal
    Lopez, Samuel
    Steiner, Georg
    Gonzalez, Lucia
    Laurinavicius, Arvydas
    Bueno, Gloria
    JOURNAL OF IMAGING, 2018, 4 (01)
  • [49] Retinal disease classification based on optical coherence tomography images using convolutional neural networks
    Stanojevic, Masa
    Draskovic, Drazen
    Nikolic, Bosko
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (03)
  • [50] Multispectral Camera Calibration Using Convolutional Neural Networks
    Trujillo, Ivan A. Juarez
    de Paz, Jonny P. Zavala
    Sandoval, Omar Palillero
    Velasquez, Francisco A. Castillo
    COMPUTACION Y SISTEMAS, 2023, 27 (03): : 801 - 810