Crop Classification Based on Lightened Convolutional Neural Networks in Multispectral Images

被引:0
|
作者
Shi, Jiawei [1 ,2 ,3 ]
Zhang, Haopeng [1 ,2 ,3 ]
Jiang, Zhiguo [1 ,2 ,3 ]
Meng, Gang [4 ]
机构
[1] Beihang Univ, Sch Astronaut, AImage Proc Ctr, Beijing 102206, Peoples R China
[2] Minist Educ, Key Lab Spacecraft Design Optimizat & Dynam Simul, Beijing 102206, Peoples R China
[3] Beijing Key Lab Digital Media, Beijing 102206, Peoples R China
[4] Beijing Inst Remote Sensing Informat, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
crop classification; multispectral remote sensing images; convolutional neural networks;
D O I
10.1117/12.2532747
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Crop classification is a representative problem in multispectral remote sensing image (RSI) classification, and has significance in country food security, ecological security, production estimate, crop growth supervision, and so on. It has attracted increasing attention of many researchers around the world especially after the development of convolutional neural networks (CNN). General CNN-based multispectral RSI classification methods may be not suitable for labeled samples with limited numbers and areas. Other pixel-based classification methods are always affected by noise and ignore spatial information. Focusing on these problems, this paper presents an approach based on lightened CNN for crop classification with a small number of tiny size labeled samples in multispectral images. The contribution of this work is to construct a lightened CNN model for crop classification with small samples in multispectral image. It avoids overfitting of deep CNN and reduces the requirement for the size of training samples. We adopt two-layer fully convolutional network (FCN) to extract features. The first layer uses a convolutional kernel of size 1 and outputs 16-band feature map to obtain spectral band information. Spatial information is extracted in the sequential layer using convolutional kernel of size 3, step 1 and padding 1. Thus the feature map after FCN and the labeled area have the same size. Finally, we use a fully connected layer and a softmax classifier for classification. Our experiment was conducted on 8-band multispectral image of size 50362-by-17810 pixels. There are 5 classes in the multispectral image, namely rice, soy, corn, non-crop, and uncertainty. The experimental result which achieves 86.28% accuracy indicates the good performance of our network for crop classification in multispectral RSIs.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Zhou, Yiren
    Song, Sibo
    Cheung, Ngai-Man
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1213 - 1217
  • [12] Multispectral Food Classification and Caloric Estimation Using Convolutional Neural Networks
    Lee, Ki-Seung
    FOODS, 2023, 12 (17)
  • [13] Scene Classification of Remote Sensing Images Based on Integrated Convolutional Neural Networks
    Zhang Xiaonan
    Zhong Xing
    Zhu Ruifei
    Gao Fang
    Zhang Zuoxing
    Bao Songze
    Li Zhuqiang
    ACTA OPTICA SINICA, 2018, 38 (11)
  • [14] Images Based Classification for Warm Cloud Rainmaking using Convolutional Neural Networks
    Arthayakun, Sarawut
    Kamonsantiroj, Suwatchai
    Pipanmaekaporn, Luepol
    2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 413 - 417
  • [15] Open-Category Classification of Hyperspectral Images based on Convolutional Neural Networks
    Huang, Tingting
    Wang, Shuang
    Zhang, Geng
    Wang, Xueji
    Liu, Song
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [16] Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks
    Syed Aamer Hussain
    Ali Tahir
    Junaid Aziz Khan
    Ahmad Salman
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87 : 33 - 45
  • [17] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [18] Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks
    Hussain, Syed Aamer
    Tahir, Ali
    Khan, Junaid Aziz
    Salman, Ahmad
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (1-2): : 33 - 45
  • [19] Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks
    Bardou, Dalal
    Zhang, Kun
    Ahmad, Sayed Mohammad
    IEEE ACCESS, 2018, 6 : 24680 - 24693
  • [20] Smart feature extraction and classification of hyperspectral images based on convolutional neural networks
    Hamouda, Maissa
    Ettabaa, Karim Saheb
    Bouhlel, Med Salim
    IET IMAGE PROCESSING, 2020, 14 (10) : 1999 - 2005