DEEPCON: protein contact prediction using dilated convolutional neural networks with dropout

被引:31
|
作者
Adhikari, Badri [1 ]
机构
[1] Univ Missouri, Dept Math & Comp Sci, St Louis, MO 63121 USA
关键词
RESIDUE-RESIDUE CONTACTS;
D O I
10.1093/bioinformatics/btz593
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Exciting new opportunities have arisen to solve the protein contact prediction problem from the progress in neural networks and the availability of a large number of homologous sequences through high-throughput sequencing. In this work, we study how deep convolutional neural networks (ConvNets) may be best designed and developed to solve this long-standing problem. Results: With publicly available datasets, we designed and trained various ConvNet architectures. We tested several recent deep learning techniques including wide residual networks, dropouts and dilated convolutions. We studied the improvements in the precision of medium-range and long-range contacts, and compared the performance of our best architectures with the ones used in existing state-of-the-art methods. The proposed ConvNet architectures predict contacts with significantly more precision than the architectures used in several state-of-the-art methods. When trained using the DeepCov dataset consisting of 3456 proteins and tested on PSICOV dataset of 150 proteins, our architectures achieve up to 15% higher precision when L/2 long-range contacts are evaluated. Similarly, when trained using the DNCON2 dataset consisting of 1426 proteins and tested on 84 protein domains in the CASP12 dataset, our single network achieves 4.8% higher precision than the ensembled DNCON2 method when top L long-range contacts are evaluated.
引用
收藏
页码:470 / 477
页数:8
相关论文
共 50 条
  • [21] Rainfall Prediction using Spatial Convolutional Neural Networks and Recurrent Neural Networks
    Lestari, Nadia Dwi Puji
    Djamal, Esmeralda Contessa
    2022 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ITS APPLICATIONS (ICODSA), 2022, : 12 - 17
  • [22] CNNcon: Improved Protein Contact Maps Prediction Using Cascaded Neural Networks
    Ding, Wang
    Xie, Jiang
    Dai, Dongbo
    Zhang, Huiran
    Xie, Hao
    Zhang, Wu
    PLOS ONE, 2013, 8 (04):
  • [23] Protein contact prediction using metagenome sequence data and residual neural networks
    Wu, Qi
    Peng, Zhenling
    Anishchenko, Ivan
    Cong, Qian
    Baker, David
    Yang, Jianyi
    BIOINFORMATICS, 2020, 36 (01) : 41 - 48
  • [24] Time Series Prediction using Convolutional Neural Networks
    Asesh, Aishwarya
    Dugar, Meenal
    2023 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLIED NETWORK TECHNOLOGIES, ICMLANT, 2023, : 29 - 34
  • [25] Prediction of Diabetic Retinopathy using Convolutional Neural Networks
    Alsuwat, Manal
    Alalawi, Hana
    Alhazmi, Shema
    Al-Shareef, Sarah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (07) : 843 - 852
  • [26] Using Local Convolutional Neural Networks for Genomic Prediction
    Pook, Torsten
    Freudenthal, Jan
    Korte, Arthur
    Simianer, Henner
    FRONTIERS IN GENETICS, 2020, 11
  • [27] Word Difficulty Prediction Using Convolutional Neural Networks
    Basu, Arpan
    Garain, Avishek
    Naskar, Sudip Kumar
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 1109 - 1112
  • [28] Bankruptcy prediction using fuzzy convolutional neural networks
    Ben Jabeur, Sami
    Serret, Vanessa
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2023, 64
  • [29] PLANT DISEASE PREDICTION USING CONVOLUTIONAL NEURAL NETWORKS
    Prasad, K. Sai
    Shekar, K.
    Chinnasamy, P.
    Kiran, Ajmeera
    Mohamed Junaid, K.A.
    Rachana, B.
    2023 IEEE International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering, RMKMATE 2023, 2023,
  • [30] Early prediction of dropout in online courses using Artificial Neural Networks
    Aguirre Montano, Hermel Santiago
    Carmen Cabrera-Loayza, Ma.
    2020 XV CONFERENCIA LATINOAMERICANA DE TECNOLOGIAS DE APRENDIZAJE (LACLO), 2020,