Ultrafast far-infrared optics of carbon nanotubes

被引:0
作者
Frischkorn, C. [1 ]
Kampfrath, T. [1 ]
Perfetti, L. [1 ]
von Volkmann, K. [1 ]
Wolf, M. [1 ]
机构
[1] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
来源
ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIII | 2009年 / 7214卷
关键词
ultrafast phenomena; carbon nanotubes; graphite; THz spectroscopy; electron-phonon coupling; charge localization; interband transition; chemical potential; ELECTRONIC-STRUCTURE; ABSORPTION-SPECTRA; FILMS; CONDUCTIVITY; GAPS; THZ;
D O I
10.1117/12.809252
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The optical properties of single-wall carbon nanotube sheets in the far-infrared (FIR) spectral range from few THz to several tens of THz have been investigated with terahertz spectroscopy both with static measurements elucidating the absorption mechanism in the FIR and with time-resolved experiments yielding information on the charge carrier dynamics after optical excitation of the nanotubes. We observe an overall depletion of the dominating broad absorption peak at around 4 THz when the nanotubes are excited by a short visible laser pulse. This finding excludes particle-plasmon resonances as absorption mechanism and instead shows that interband transitions in tubes with an energy gap of similar to 10meV govern the far-infrared conductivity. A simple model based on an ensemble of two-level systems naturally explains the weak temperature dependence of the far-infrared conductivity by the tube-to-tube variation of the chemical potential. Furthermore, the time-resolved measurements do not show any evidence of a distinct free-carrier response which is attributed to the photogeneration of strongly bound excitons in the tubes with large energy gaps. The rapid decay of a featureless background with pronounced dichroism is associated with the increased absorption of spatially localized charge carriers before thermalization is completed.
引用
收藏
页数:9
相关论文
共 50 条
[41]   MIDDLE- AND FAR-INFRARED DETECTOR BASED ON THE PLANE COLLECTION OF GRAPHENE STRIPS [J].
Maksimenko, Sergey A. ;
Maffucci, Antonio ;
Portnoi, Misha E. ;
Saroka, Vasil A. ;
Slepyan, Gregory Y. .
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2021, 65 (06) :661-667
[42]   Demonstration of high optical sensitivity in far-infrared hot-electron bolometer [J].
Karasik, Boris S. ;
Cantor, Robin .
APPLIED PHYSICS LETTERS, 2011, 98 (19)
[43]   Sub-millimeter and Far-Infrared Technology in the Herschel Space Observatory and Beyond [J].
Pearson, John C. .
2010 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT), 2010, :824-827
[44]   Far-Infrared Ferromagnetic Resonance of Magnetic Garnet for High Frequency Electromagnetic Sensor [J].
Adachi, Nobuyasu ;
Uematsu, Daisuke ;
Ota, Toshitaka ;
Takahashi, Masanori ;
Ishiyama, Kazushi ;
Kawasaki, Katsumi ;
Ota, Hiroyasu ;
Arai, Kenichi ;
Fujisawa, S. ;
Okubo, Susumu ;
Ohta, Hitoshi .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) :1986-1989
[45]   Ultrafast Relaxation Dynamics via Acoustic Phonons in Carbon Nanotubes [J].
Dyatloya, Olga A. ;
Koehler, Christopher ;
Malic, Ermin ;
Gomis-Bresco, Jordi ;
Maultzsch, Janina ;
Tsagan-Mandzhiev, Andrey ;
Watermann, Tobias ;
Knorr, Andreas ;
Woggon, Ulrike .
NANO LETTERS, 2012, 12 (05) :2249-2253
[46]   Terahertz and Ultrafast Dynamics of Carriers and Phonons in Graphene and Carbon Nanotubes [J].
Gao, Weilu ;
Zhang, Qi ;
Ren, Lei ;
Jin, Zehua ;
Kim, Ji-Hee ;
Kono, Junichiro .
ULTRAFAST PHENOMENA AND NANOPHOTONICS XVIII, 2014, 8984
[47]   Ultrafast vibrational motion of carbon nanotubes in different pH environments [J].
Makino, Kotaro ;
Hirano, Atsushi ;
Shiraki, Kentaro ;
Maeda, Yutaka ;
Hase, Muneaki .
PHYSICAL REVIEW B, 2009, 80 (24)
[48]   Ultrafast exciton and charge transfer in small aggregates of carbon nanotubes [J].
Lueer, L. ;
Crochet, J. ;
Hoseinkhani, S. ;
Hertel, T. ;
Cerullo, G. ;
Lanzani, G. .
ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XV, 2011, 7937
[49]   Beamforming of Electrically Tunable Plasmonic Graphene Strip Nanoantennas in the Terahertz, Far-Infrared, and Mid-Infrared Ranges [J].
Makeeva, G. S. .
TECHNICAL PHYSICS, 2024, 69 (08) :2249-2255
[50]   Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes [J].
Shuba, M. V. ;
Slepyan, G. Ya. ;
Maksimenko, S. A. ;
Thomsen, C. ;
Lakhtakia, A. .
PHYSICAL REVIEW B, 2009, 79 (15)