ENTROPY PRODUCTION FOR ELLIPSOIDAL BGK MODEL OF THE BOLTZMANN EQUATION

被引:17
作者
Yun, Seok-Bae [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Kinetic theory of gases; BGK model; ellipsoidal BGK model; Boltzmann equation; entropy production; GLOBAL EXISTENCE; KINETIC-EQUATIONS; CAUCHY-PROBLEM; GAS; DISSIPATION; CONVERGENCE; SCHEME; BOUNDS; LIMIT; FLOW;
D O I
10.3934/krm.2016009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ellipsoidal BGK model (ES-BGK) is a generalized version of the original BGK model, designed to yield the correct Prandtl number in the Navier-Stokes limit. In this paper, we make two observations on the entropy production functional of the ES-BGK model. First, we show that the Cercignani type estimate holds for the ES-BGK model in the whole range of relaxation parameter -1/2 < v < 1. Secondly, we observe that the ellipsoidal relaxation operator satisfies an unexpected sign-definite property. Some implications of these observations are also discussed.
引用
收藏
页码:605 / 619
页数:15
相关论文
共 52 条
[31]   WEIGHTED L-INFINITY BOUNDS AND UNIQUENESS FOR THE BOLTZMANN BGK MODEL [J].
PERTHAME, B ;
PULVIRENTI, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 125 (03) :289-295
[32]   Implicit-explicit schemes for BGK kinetic equations [J].
Pieraccini, Sandra ;
Puppo, Gabriella .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 32 (01) :1-28
[33]   CONVERGENCE OF A SEMI-LAGRANGIAN SCHEME FOR THE BGK MODEL OF THE BOLTZMANN EQUATION [J].
Russo, Giovanni ;
Santagati, Pietro ;
Yun, Seok-Bae .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1111-1135
[34]   SEMILAGRANGIAN SCHEMES APPLIED TO MOVING BOUNDARY PROBLEMS FOR THE BGK MODEL OF RAREFIED GAS DYNAMICS [J].
Russo, Giovanni ;
Filbet, Francis .
KINETIC AND RELATED MODELS, 2009, 2 (01) :231-250
[35]   From the BGK model to the Navier-Stokes equations [J].
Saint-Raymond, L .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (02) :271-317
[36]   Discrete time Navier-Stokes limit for the BGK Boltzmann Equation [J].
Saint-Raymond, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (1-2) :149-184
[37]  
Sone Y., 2006, Molecular Gas Dynamics: Theory, Techniques, and Applications
[38]  
Sone Y., 2002, MODEL SIMUL SCI ENG, DOI 10.1007/978-1-4612-0061-1
[39]  
Struchtrup H., 2005, INTER MEC M, DOI 10.1007/3-540-32386-4
[40]   Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation [J].
Toscani, G ;
Villani, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (03) :667-706