ENTROPY PRODUCTION FOR ELLIPSOIDAL BGK MODEL OF THE BOLTZMANN EQUATION

被引:17
作者
Yun, Seok-Bae [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Kinetic theory of gases; BGK model; ellipsoidal BGK model; Boltzmann equation; entropy production; GLOBAL EXISTENCE; KINETIC-EQUATIONS; CAUCHY-PROBLEM; GAS; DISSIPATION; CONVERGENCE; SCHEME; BOUNDS; LIMIT; FLOW;
D O I
10.3934/krm.2016009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ellipsoidal BGK model (ES-BGK) is a generalized version of the original BGK model, designed to yield the correct Prandtl number in the Navier-Stokes limit. In this paper, we make two observations on the entropy production functional of the ES-BGK model. First, we show that the Cercignani type estimate holds for the ES-BGK model in the whole range of relaxation parameter -1/2 < v < 1. Secondly, we observe that the ellipsoidal relaxation operator satisfies an unexpected sign-definite property. Some implications of these observations are also discussed.
引用
收藏
页码:605 / 619
页数:15
相关论文
共 52 条
[1]   Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases [J].
Andries, P ;
Bourgat, JF ;
le Tallec, P ;
Perthame, B .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (31) :3369-3390
[2]   The Gaussian-BGK model of Boltzmann equation with small Prandtl number [J].
Andries, P ;
Le Tallec, P ;
Perlat, JP ;
Perthame, B .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2000, 19 (06) :813-830
[3]  
[Anonymous], 1994, Applied Mathematical Sciences
[4]   Numerical analysis of a supersonic rarefied gas flow past a flat plate [J].
Aoki, K ;
Kanba, K ;
Takata, S .
PHYSICS OF FLUIDS, 1997, 9 (04) :1144-1161
[5]   Global existence and large-time behavior for BGK model for a gas with non-constant cross section [J].
Bellouquid, A .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2003, 32 (02) :157-184
[6]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[7]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[8]  
Bird G. A., 1995, OXFORD ENG SCI
[9]   Entropy dissipation estimates for the linear Boltzmann operator [J].
Bisi, Marzia ;
Canizo, Jose A. ;
Lods, Bertrand .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (04) :1028-1069
[10]   On the rate of entropy production for the Boltzmann equation [J].
Bobylev, AV ;
Cercignani, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (3-4) :603-618