Optimal designs for trigonometric regression models

被引:10
作者
Dette, Holger [1 ]
Melas, Viatcheslav B. [2 ]
Shpilev, Petr [2 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] St Petersburg State Univ, Dept Math, St Petersburg, Russia
关键词
L-optimal designs; Fourier regression models; Parameter subsets; Equivalence theorem; FOURIER REGRESSION; COEFFICIENTS; DISCRIMINATION; EQUIVALENCE;
D O I
10.1016/j.jspi.2010.10.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the common Fourier regression model we investigate the optimal design problem for the estimation of linear combinations of the coefficients, where the explanatory variable varies in the interval In a recent paper Dette et al. (2009) determined optimal designs for estimating certain pairs of the coefficients in the model. The optimal design problem corresponds to a linear optimality criterion for a specific matrix L. In the present paper these results are extended to more general matrices L. By our results the optimal design problem for a Fourier regression of large degree can be reduced to a design problem in a model of lower degree, which allows the determination of L-optimal designs in many important cases. The results are illustrated by several examples. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1343 / 1353
页数:11
相关论文
共 16 条
[1]  
[Anonymous], OPTIMAL DESIGN EXPT
[2]   Constrained optimal discrimination designs for Fourier regression models [J].
Biedermann, Stefanie ;
Dette, Holger ;
Hoffmann, Philipp .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) :143-157
[3]  
Dette H, 1998, ANN STAT, V26, P1496
[4]  
Dette H, 2003, ANN STAT, V31, P1669
[5]   Optimal designs for estimating the coefficients of the lower frequencies in trigonometric regression models [J].
Dette, Holger ;
Melas, Viatcheslav B. ;
Shpilev, Piter .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (04) :655-673
[6]  
Dette H, 2009, STAT SINICA, V19, P1587
[7]   EQUIVALENCE OF D-OPTIMAL DESIGN MEASURES FOR 3 RIVAL LINEAR-MODELS [J].
HILL, PDH .
BIOMETRIKA, 1978, 65 (03) :666-667
[8]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[9]   GENERAL EQUIVALENCE THEORY FOR OPTIMUM DESIGNS (APPROXIMATE THEORY) [J].
KIEFER, J .
ANNALS OF STATISTICS, 1974, 2 (05) :849-879
[10]   OPTIMAL DESIGNS FOR TRIGONOMETRIC AND POLYNOMIAL REGRESSION USING CANONICAL MOMENTS [J].
LAU, TS ;
STUDDEN, WJ .
ANNALS OF STATISTICS, 1985, 13 (01) :383-394