Personalized long-term ECG classification: A systematic approach

被引:40
作者
Kiranyaz, Serkan [1 ]
Ince, Turker [2 ]
Pulkkinen, Jenni [1 ]
Gabbouj, Moncef [1 ]
机构
[1] Tampere Univ Technol, Dept Signal Proc, FIN-33101 Tampere, Finland
[2] Izmir Univ Econ, Dept Elect & Telecommun Engn, Izmir, Turkey
关键词
Personalized long-term ECG classification; Exhaustive K-means clustering; Holter registers; MORPHOLOGY; TRANSFORM; HEART;
D O I
10.1016/j.eswa.2010.09.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a personalized long-term electrocardiogram (ECG) classification framework, which addresses the problem within a long-term ECG signal, known as Halter register, recorded from an individual patient. Due to the massive amount of ECG beats in a Halter register, visual inspection is quite difficult and cumbersome, if not impossible. Therefore, the proposed system helps professionals to quickly and accurately diagnose any latent heart disease by examining only the representative beats (the so-called master key-beats) each of which is automatically extracted from a time frame of homogeneous (similar) beats. We tested the system on a benchmark database where beats of each Halter register have been manually labeled by cardiologists. The selection of the right master key-beats is the key factor for achieving a highly accurate classification and thus we used exhaustive K-means clustering in order to find out (near-) optimal number of key-beats as well as the master key-beats. The classification process produced results that were consistent with the manual labels with over 99% average accuracy, which basically shows the efficiency and the robustness of the proposed system over massive data (feature) collections in high dimensions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3220 / 3226
页数:7
相关论文
共 50 条
[41]   Long-Term Mechanical Behavior of Aramid Fibers in Seawater [J].
Derombise, G. ;
Chailleux, E. ;
Forest, B. ;
Riou, L. ;
Lacotte, N. ;
Van Schoors, L. Vouyovitch ;
Davies, P. .
POLYMER ENGINEERING AND SCIENCE, 2011, 51 (07) :1366-1375
[42]   Changes in QTc interval in long-term hemodialysis patients [J].
Matsumoto, Yoshihiro ;
Mori, Yasuo ;
Kageyama, Shinji ;
Arihara, Kazuo ;
Sato, Hidemaro ;
Nagata, Kijun ;
Shimada, Yasushi ;
Nojima, Yohichi ;
Iguchi, Koichiro ;
Sugiyama, Toshikazu .
PLOS ONE, 2019, 14 (01)
[43]   Long-term outcomes of mitral regurgitation by type and severity [J].
Samad, Zainab ;
Shaw, Linda K. ;
Phelan, Matthew ;
Glower, Donald D. ;
Ersboll, Mads ;
Toptine, John H. ;
Alexander, John H. ;
Kisslo, Joseph A. ;
Wang, Andrew ;
Mark, Daniel B. ;
Velazquez, Eric J. .
AMERICAN HEART JOURNAL, 2018, 203 :39-48
[44]   Protective effect of long-term angiotensin II inhibition [J].
Basso, Nidia ;
Cini, Rosa ;
Pietrelli, Adriana ;
Ferder, Leon ;
Terragno, Norberto A. ;
Inserra, Felipe .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 293 (03) :H1351-H1358
[45]   Influence of Long-Term Obesity on Myocardial Gene Expression [J].
Lima-Leopoldo, Ana Paula ;
Leopoldo, Andre Soares ;
Tomaz Silva, Danielle Cristina ;
do Nascimento, Andre Ferreira ;
Salome de Campos, Dijon Henrique ;
Melo Luvizotto, Renata de Azevedo ;
de Oliveira Junior, Silvio Assis ;
Padovani, Carlos Roberto ;
Nogueira, Celia Regina ;
Cicogna, Antonio Carlos .
ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2013, 100 (03) :229-237
[46]   Long-term cardiac protective effect of nitric oxide [J].
Malyshev, IY ;
Malenyuk, EB ;
Manukhina, EB ;
Mikoyan, VD ;
Vanin, AF .
BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 1998, 125 (01) :17-19
[47]   Long-term use and tolerability of irbesartan for control of hypertension [J].
Forni, Valentina ;
Wuerzner, Gregoire ;
Pruijm, Menno ;
Burnier, Michel .
INTEGRATED BLOOD PRESSURE CONTROL, 2011, 4 :17-26
[48]   Population Dynamics and Long-Term Trajectory of Dendritic Spines [J].
Ozcan, Ahmet S. ;
Ozcan, Mehmet S. .
FRONTIERS IN SYNAPTIC NEUROSCIENCE, 2018, 10
[49]   Long short-term memory algorithm for personalized tacrolimus dosing: A simple and effective time series forecasting approach post-lung transplantation [J].
Choshi, Haruki ;
Miyoshi, Kentaroh ;
Tanioka, Maki ;
Arai, Hayato ;
Tanaka, Shin ;
Shien, Kazuhiko ;
Suzawa, Ken ;
Okazaki, Mikio ;
Sugimoto, Seiichiro ;
Toyooka, Shinichi .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2025, 44 (03) :351-361
[50]   Deep neural network based approach for ECG classification using hybrid differential features and active learning [J].
Hanbay, Kazim .
IET SIGNAL PROCESSING, 2019, 13 (02) :165-175