Closely embedded Krein spaces and applications to Dirac operators

被引:0
|
作者
Cojuhari, Petru [2 ]
Gheondea, Aurelian [1 ,3 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
[2] AGH Univ Sci & Technol, Dept Appl Math, PL-30059 Krakow, Poland
[3] Acad Romana, Inst Matemat, Bucharest 014700, Romania
关键词
Krein space; Operator range; Closed embedding; Kernel operator; Homogenous Sobolev space; Dirac operator; HERMITIAN KERNELS; HILBERT-SPACES; REPRESENTATIONS;
D O I
10.1016/j.jmaa.2010.10.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by energy space representation of Dirac operators, in the sense of K. Friedrichs, we recently introduced the notion of closely embedded Krein spaces. These spaces are associated to unbounded selfadjoint operators that play the role of kernel operators, in the sense of L Schwartz, and they are special representations of induced Krein spaces. In this article we present a canonical representation of closely embedded Krein spaces in terms of a generalization of the notion of operator range and obtain a characterization of uniqueness. When applied to Dirac operators, the results differ according to a mass or a massless particle in a dramatic way: in the case of a particle with a nontrivial mass we obtain a dual of a Sobolev type space and we have uniqueness, while in the case of a massless particle we obtain a dual of a homogenous Sobolev type space and we lose uniqueness. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:540 / 550
页数:11
相关论文
共 50 条
  • [1] ON OPERATORS OF TRANSITION IN KREIN SPACES
    Grod, A.
    Kuzhel, S.
    Sudilovskaya, V.
    OPUSCULA MATHEMATICA, 2011, 31 (01) : 49 - 59
  • [2] POSITIVE OPERATORS ON KREIN SPACES
    ABRAMOVICH, YA
    ALIPRANTIS, CD
    BURKINSHAW, O
    ACTA APPLICANDAE MATHEMATICAE, 1992, 27 (1-2) : 1 - 22
  • [3] ON HYPONORMAL OPERATORS IN KREIN SPACES
    Esmeral, Kevin
    Ferrer, Osmin
    Jalk, Jorge
    Lora Castro, Boris
    ARCHIVUM MATHEMATICUM, 2019, 55 (04): : 249 - 259
  • [4] KREIN SPACES INDUCED BY SYMMETRIC OPERATORS
    Cojuhari, Petru
    Gheondea, Aurelian
    JOURNAL OF OPERATOR THEORY, 2009, 61 (02) : 347 - 367
  • [5] JULIA OPERATORS AND COMPLEMENTATION IN KREIN SPACES
    DRITSCHEL, MA
    ROVNYAK, J
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (03) : 885 - 901
  • [6] UNITARY COLLIGATIONS OF OPERATORS IN KREIN SPACES
    MARCANTOGNINI, S
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (05) : 701 - 727
  • [7] Linear operators in almost Krein spaces
    Azizov, Tomas Ya.
    Soukhotcheva, Lioudmila I.
    OPERATOR THEORY IN INNER PRODUCT SPACES, 2007, 175 : 1 - 11
  • [9] Generalized Jacobi operators in Krein spaces
    Derevyagin, Maxim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 568 - 582
  • [10] Hilbert–Pólya Operators in Krein Spaces
    V. V. Kapustin
    Siberian Mathematical Journal, 2024, 65 : 72 - 75