Wave packet dynamics in periodically kicked nonlinear systems

被引:0
作者
Yu, Yan [1 ,2 ]
Gao, Yi [1 ,2 ]
Tong, Peiqing [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Theoret Phys, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab Numer Simulat Large Scale Complex, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
kicked systems; nonlinearity; localization; diffusion; BOSE-EINSTEIN CONDENSATE; ANDERSON LOCALIZATION; QUANTUM; DELOCALIZATION; CHAOS; MODEL;
D O I
10.1088/1361-6455/aa7b6b
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the dynamics of a wave packet in a periodically kicked nonlinear Aubry-Andre (AA) model when the initial state is localized at a single lattice site. We found that, beside the nonlinearity strength beta and the strength (phase) of the quasiperiodic potential lambda (theta), the kicking period T can also influence the dynamical evolution of the wave packet. Especially when T, beta << 1, the periodically kicked nonlinear AA model can be reduced to a static nonlinear AA model with a rescaled nonlinearity strength beta/T.
引用
收藏
页数:7
相关论文
共 27 条
[1]   Localization of a Bose-Einstein condensate in a bichromatic optical lattice [J].
Adhikari, S. K. ;
Salasnich, L. .
PHYSICAL REVIEW A, 2009, 80 (02)
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]  
Casati G., 1979, LECTURE NOTES PHYSIC, V93, P334, DOI DOI 10.1007/BFB0021757
[4]   Transition between extended and localized states in a one-dimensional incommensurate optical lattice [J].
Diener, RB ;
Georgakis, GA ;
Zhong, JX ;
Raizen, M ;
Niu, Q .
PHYSICAL REVIEW A, 2001, 64 (03) :7
[5]   CHAOS, QUANTUM RECURRENCES, AND ANDERSON LOCALIZATION [J].
FISHMAN, S ;
GREMPEL, DR ;
PRANGE, RE .
PHYSICAL REVIEW LETTERS, 1982, 49 (08) :509-512
[6]   Universal Spreading of Wave Packets in Disordered Nonlinear Systems [J].
Flach, S. ;
Krimer, D. O. ;
Skokos, Ch. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[7]   Delocalization of two interacting particles in the 2D Harper model [J].
Frahm, Klaus M. ;
Shepelyansky, Dima L. .
EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (01) :1-10
[8]   Delocalization induced by nonlinearity in systems with disorder [J].
Garcia-Mata, Ignacio ;
Shepelyansky, Dima L. .
PHYSICAL REVIEW E, 2009, 79 (02)
[9]   QUANTUM DYNAMICS OF A NONINTEGRABLE SYSTEM [J].
GREMPEL, DR ;
PRANGE, RE ;
FISHMAN, S .
PHYSICAL REVIEW A, 1984, 29 (04) :1639-1647
[10]   LOCALIZATION IN AN INCOMMENSURATE POTENTIAL - AN EXACTLY SOLVABLE MODEL [J].
GREMPEL, DR ;
FISHMAN, S ;
PRANGE, RE .
PHYSICAL REVIEW LETTERS, 1982, 49 (11) :833-836