Nonexistence of PR-semi-slant warped product submanifolds in paracosymplectic manifolds

被引:0
作者
Sharma, A. [1 ]
Uddin, Siraj [2 ]
Srivastava, S. K. [3 ]
机构
[1] Lovely Profess Univ, Dept Math, Jalandhar 144411, Punjab, India
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[3] Cent Univ Himachal Pradesh, Dept Math, Dharamshala 176215, Himachal Prades, India
关键词
CR-SUBMANIFOLDS; GEOMETRY; INEQUALITY; IMMERSIONS;
D O I
10.1007/s40065-018-0234-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we prove that there does not exist any PR-semi-slant warped product submanifolds in paracosymplectic manifolds. In addition, by presenting a non-trivial example we find that there is no proper PR-semi-slant warped product submanifold other than PR-semi-invariant warped products.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 42 条
[1]   Slant Submanifolds of Para-Hermitian Manifolds [J].
Alegre, Pablo ;
Carriazo, Alfonso .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
[2]   SLANT SUBMANIFOLDS OF LORENTZIAN SASAKIAN AND PARA SASAKIAN MANIFOLDS [J].
Alegre, Pablo .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03) :897-910
[3]   SLANT SUBMANIFOLDS OF SEMI-RIEMANNIAN MANIFOLDS [J].
Aydin, Gulsah ;
Coken, A. Ceylan .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (10)
[4]  
Bejancu A., 1984, C MATH, V48, P77
[5]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[6]   Semi-slant submanifolds of a Sasakian manifold [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GEOMETRIAE DEDICATA, 1999, 78 (02) :183-199
[7]   BI-LEGENDRIAN STRUCTURES AND PARACONTACT GEOMETRY [J].
Cappelletti Montano, Beniamino .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (03) :487-504
[8]  
Chen B. Y., 2013, J ADV MATH STUD, V6, P1
[9]  
Chen B.-Y., ARXIV180611102V1MATH
[10]  
Chen B. Y., 1990, GEOMETRY SLANT SUBMA