A posteriori error analysis of an augmented mixed formulation in linear elasticity with mixed and Dirichlet boundary conditions

被引:5
|
作者
Barrios, Tomas P. [2 ]
Behrens, Edwin M. [3 ]
Gonzalez, Maria [1 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna 15071, Spain
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Concepcion, Chile
关键词
Mixed finite element; Augmented formulation; A posteriori error estimator; Linear elasticity; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.cma.2010.07.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a residual-based a posteriori error analysis for the augmented mixed methods introduced in [13,14] for the problem of linear elasticity in the plane. We prove that the proposed a posteriori error estimators are both reliable and efficient. Numerical experiments confirm these theoretical properties and illustrate the ability of the corresponding adaptive algorithms to localize the singularities and large stress regions of the solutions. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
  • [1] A POSTERIORI ERROR ANALYSIS OF AN AUGMENTED DUAL-MIXED METHOD IN LINEAR ELASTICITY WITH MIXED BOUNDARY CONDITIONS
    Barrios, Tomas P.
    Behrens, Edwin M.
    Gonzalez, Maria
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) : 804 - 824
  • [2] Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity
    Barrios, Tomas P.
    Behrens, Edwin M.
    Gonzalez, Maria
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 46 - 65
  • [3] A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions
    Repin, S
    Sauter, S
    Smolianski, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 : 601 - 612
  • [4] A note on a posteriori error analysis for dual mixed methods with mixed boundary conditions
    Barrios, Tomas P.
    Bustinza, Rommel
    Campos, Camila
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3897 - 3918
  • [5] A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity
    Gatica, Gabriel N.
    Gatica, Luis F.
    Sequeira, Filander A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (02) : 585 - 614
  • [6] A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
    Barrios, Tomas P.
    Gatica, Gabriel N.
    Gonzalez, Maria
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05): : 843 - 869
  • [7] A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model
    Colmenares, Eligio
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (03) : 693 - 714
  • [8] A posteriori error analysis of an augmented mixed-primal formulation for the stationary Boussinesq model
    Eligio Colmenares
    Gabriel N. Gatica
    Ricardo Oyarzúa
    Calcolo, 2017, 54 : 1055 - 1095
  • [9] A posteriori error analysis of an augmented mixed-primal formulation for the stationary Boussinesq model
    Colmenares, Eligio
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    CALCOLO, 2017, 54 (03) : 1055 - 1095
  • [10] An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions
    GI2MA, Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
    Electron. Trans. Numer. Anal., 2007, (421-438):