A posteriori error analysis of an augmented mixed formulation in linear elasticity with mixed and Dirichlet boundary conditions

被引:5
作者
Barrios, Tomas P. [2 ]
Behrens, Edwin M. [3 ]
Gonzalez, Maria [1 ]
机构
[1] Univ A Coruna, Dept Matemat, La Coruna 15071, Spain
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[3] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Concepcion, Chile
关键词
Mixed finite element; Augmented formulation; A posteriori error estimator; Linear elasticity; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.cma.2010.07.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a residual-based a posteriori error analysis for the augmented mixed methods introduced in [13,14] for the problem of linear elasticity in the plane. We prove that the proposed a posteriori error estimators are both reliable and efficient. Numerical experiments confirm these theoretical properties and illustrate the ability of the corresponding adaptive algorithms to localize the singularities and large stress regions of the solutions. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 21 条
[1]  
Arnold D. N., 1984, JAPAN J APPL MATH, V1, P347
[2]   Mixed finite elements for elasticity [J].
Arnold, DN ;
Winther, R .
NUMERISCHE MATHEMATIK, 2002, 92 (03) :401-419
[3]   Mixed finite element methods for linear elasticity with weakly imposed symmetry [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1699-1723
[4]  
Arnold DN, 2006, IMA VOL MATH APPL, V142, P23
[5]   On the mixed finite element method with Lagrange multipliers [J].
Babuska, I ;
Gatica, GN .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (02) :192-210
[6]   An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) :653-676
[7]   A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. ;
Gonzalez, Maria ;
Heuer, Norbert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05) :843-869
[8]   A posteriori error estimate for the mixed finite element method [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :465-476
[9]   A posteriori error estimates for mixed FEM in elasticity [J].
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 1998, 81 (02) :187-209
[10]   An a posteriori error estimate for a first-kind integral equation [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :139-155