Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

被引:0
作者
Fedele, R. [1 ]
Eliasson, B. [2 ]
Haas, E. [3 ]
Shukla, P. K. [2 ]
Jovanovic, D. [4 ]
De Nicola, S. [5 ]
机构
[1] Univ Federico II, Dipartimento Sci Fis, INFN, Complesso Univ MS Angelo,Via Cintia 1, I-80126 Naples, Italy
[2] Ruhr Univ, Inst Theoretische Phys IV, Fak Phys & Astronome, D-44780 Bochum, Germany
[3] Univ Vale Rio dos Sinos, Dept Engn Mech, Unisinos, BR-9302200 Sao Leopoldo, Brazil
[4] Inst Phys, Belgrade 11001, Serbia
[5] Inst Nazionale Ottica CNR, I-80078 Pozzuoli, Italy
来源
NEW FRONTIERS IN ADVANCED PLASMA PHYSICS | 2010年 / 1306卷
关键词
Bose Einstein condensates; nonlinear Schrodinger equation; Korteweg-de Vries equation; solitons; controlling potential method; BOSE-EINSTEIN CONDENSATE; MATTER-WAVE SOLITONS; NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; ATTRACTIVE INTERACTIONS; DARK SOLITONS; TRAPS; COLLAPSE; STABILITY; VORTICES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.
引用
收藏
页码:61 / +
页数:3
相关论文
共 50 条
  • [31] Rogue waves and nonzero background solutions for the Gross-Pitaevskii equation with a parabolic potential
    Xie, Jiajie
    Zhang, Da-jun
    Zhao, Xuehui
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [32] A symplectic scheme of Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 552 - 553
  • [33] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [34] Exact soliton solutions of Gross Pitaevskii equation with a variable shape optical lattice potential
    Oztas, Z.
    Kaplan, E.
    PHYSICS LETTERS A, 2024, 525
  • [35] Quantum Gross-Pitaevskii Equation
    Haegeman, Jutho
    Draxler, Damian
    Stojevic, Vid
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Verstraete, Frank
    SCIPOST PHYSICS, 2017, 3 (01):
  • [36] Multiple branches of travelling waves for the Gross-Pitaevskii equation
    Chiron, David
    Scheid, Claire
    NONLINEARITY, 2018, 31 (06) : 2809 - 2853
  • [37] SCATTERING THEORY FOR THE GROSS-PITAEVSKII EQUATION IN THREE DIMENSIONS
    Gustafson, Stephen
    Nakanishi, Kenji
    Tsai, Tai-Peng
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (04) : 657 - 707
  • [38] Integrability of a general Gross-Pitaevskii equation and exact solitonic solutions of a Bose-Einstein condensate in a periodic potential
    Al Khawaja, U.
    PHYSICS LETTERS A, 2009, 373 (31) : 2710 - 2716
  • [39] Limiting profile of blow-up solutions for the Gross-Pitaevskii equation
    Zhu ShiHui
    Zhang Jian
    Li XiaoGuang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 1017 - 1030
  • [40] A spectral-Galerkin continuation method for numerical solutions of the Gross-Pitaevskii equation
    Chang, S. -L.
    Chen, H. -S.
    Jeng, B. -W.
    Chien, C. -S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 254 : 2 - 16