Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

被引:0
|
作者
Fedele, R. [1 ]
Eliasson, B. [2 ]
Haas, E. [3 ]
Shukla, P. K. [2 ]
Jovanovic, D. [4 ]
De Nicola, S. [5 ]
机构
[1] Univ Federico II, Dipartimento Sci Fis, INFN, Complesso Univ MS Angelo,Via Cintia 1, I-80126 Naples, Italy
[2] Ruhr Univ, Inst Theoretische Phys IV, Fak Phys & Astronome, D-44780 Bochum, Germany
[3] Univ Vale Rio dos Sinos, Dept Engn Mech, Unisinos, BR-9302200 Sao Leopoldo, Brazil
[4] Inst Phys, Belgrade 11001, Serbia
[5] Inst Nazionale Ottica CNR, I-80078 Pozzuoli, Italy
来源
NEW FRONTIERS IN ADVANCED PLASMA PHYSICS | 2010年 / 1306卷
关键词
Bose Einstein condensates; nonlinear Schrodinger equation; Korteweg-de Vries equation; solitons; controlling potential method; BOSE-EINSTEIN CONDENSATE; MATTER-WAVE SOLITONS; NONLINEAR SCHRODINGER-EQUATION; NEUTRAL ATOMS; ATTRACTIVE INTERACTIONS; DARK SOLITONS; TRAPS; COLLAPSE; STABILITY; VORTICES;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.
引用
收藏
页码:61 / +
页数:3
相关论文
共 50 条
  • [21] Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model
    Wang, Ying
    Zhou, Yu
    Zhou, Shuyu
    Zhang, Yongsheng
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [22] Travelling waves for the Gross-Pitaevskii equation, I
    Bethuel, F
    Saut, JC
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 70 (02): : 147 - 238
  • [23] Comparison of Finite-Difference Schemes for the Gross-Pitaevskii Equation
    Trofimov, V. A.
    Peskov, N. V.
    MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (01) : 109 - 126
  • [24] Comparison of Splitting Methods for Deterministic/Stochastic Gross-Pitaevskii Equation
    Geiser, Juergen
    Nasari, Amirbahador
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2019, 24 (03)
  • [25] RIGOROUS DERIVATION OF THE GROSS-PITAEVSKII EQUATION WITH A LARGE INTERACTION POTENTIAL
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (04) : 1099 - 1156
  • [26] Quantitative Derivation of the Gross-Pitaevskii Equation
    Benedikter, Niels
    de Oliveira, Gustavo
    Schlein, Benjamin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1399 - 1482
  • [27] Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates
    Borisov, A. V.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2015, 57 (09) : 1201 - 1209
  • [28] Adiabatic theorem for the Gross-Pitaevskii equation
    Gang, Zhou
    Grech, Philip
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) : 731 - 756
  • [29] Vortex solutions of the discrete Gross-Pitaevskii equation starting from the anti-continuum limit
    Cuevas, J.
    James, G.
    Kevrekidis, P. G.
    Law, K. J. H.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1422 - 1431
  • [30] Bounds on the tight-binding approximation for the Gross-Pitaevskii equation with a periodic potential
    Pelinovsky, Dmitry
    Schneider, Guido
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) : 837 - 849