Unsupervised Hebbian learning in neural networks

被引:0
|
作者
Freisleben, B [1 ]
Hagen, C [1 ]
机构
[1] Univ Gesamthsch Siegen, Dept Elect Engn & Comp Sci, D-57068 Siegen, Germany
来源
COMPUTING ANTICIPATORY SYSTEMS: CASYS - FIRST INTERNATIONAL CONFERENCE | 1998年 / 437卷
关键词
unsupervised Hebbian learning; principal component analysis; minor component analysis; independent component analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a survey of a particular class of unsupervised learning rules for neural networks is presented. These learning rules are based on variants of Hebbian correlation learning to update the connection weights of two-layer network architectures consisting of an input layer with n units and an output layer with m units. It will be demonstrated that the networks are able to perform a variety of important data analysis tasks, including Principal Component Analysis (PCA), Minor Component Analysis (MCA) and Independent Component Analysis (ICA).
引用
收藏
页码:606 / 625
页数:20
相关论文
共 50 条
  • [41] Learning time reduction in artificial neural networks applied to hydrology.
    Brahm, A
    Varas, E
    INGENIERIA HIDRAULICA EN MEXICO, 2003, 18 (02): : 69 - 82
  • [42] Augmented Efficient BackProp for Backpropagation Learning in Deep Autoassociative Neural Networks
    Embrechts, Mark J.
    Hargis, Blake J.
    Linton, Jonathan D.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [43] Noise-robust acoustic signature recognition using nonlinear Hebbian learning
    Lu, Bing
    Dibazar, Alireza
    Berger, Theodore W.
    NEURAL NETWORKS, 2010, 23 (10) : 1252 - 1263
  • [44] Hebbian learning from higher-order correlations requires crosstalk minimization
    Cox, K. J. A.
    Adams, P. R.
    BIOLOGICAL CYBERNETICS, 2014, 108 (04) : 405 - 422
  • [45] Independent component analysis by general nonlinear Hebbian-like learning rules
    Hyvarinen, A
    Oja, E
    SIGNAL PROCESSING, 1998, 64 (03) : 301 - 313
  • [46] Structural and functional brain networks of individual differences in trait anger and anger control: An unsupervised machine learning study
    Sorella, Sara
    Vellani, Valentina
    Siugzdaite, Roma
    Feraco, Paola
    Grecucci, Alessandro
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2022, 55 (02) : 510 - 527
  • [47] A class of neural networks for independent component analysis
    Karhunen, J
    Oja, E
    Wang, LY
    Vigario, R
    Joutsensalo, J
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 486 - 504
  • [48] A maximum likelihood Hebbian learning-based method to an agent-based architecture
    Corchado, Emilio
    Assumpcio Pellicer, M.
    Lourdes Borrajo, M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (10-11) : 1760 - 1768
  • [49] Unsupervised machine learning of phase transition in percolation
    Yu, Wei
    Lyu, Pin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 559
  • [50] Hierarchical Exploration of Continuous Seismograms With Unsupervised Learning
    Steinmann, Rene
    Seydoux, Leonard
    Beauce, Eric
    Campillo, Michel
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (01)