Defect-Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonics-Driven Reactive Oxygen Species Generation

被引:60
作者
Zhu, Houjuan [1 ,2 ,3 ]
Zan, Wenyan [4 ]
Chen, Wanli [1 ]
Jiang, Wenbin [2 ]
Ding, Xianguang [5 ,6 ]
Li, Bang Lin [7 ]
Mu, Yuewen [4 ]
Wang, Lei [1 ]
Garaj, Slaven [3 ,8 ,9 ,10 ]
Leong, David Tai [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[2] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
[3] Natl Univ Singapore, Ctr Adv 2D Mat, Graphene Res Ctr, Singapore 117546, Singapore
[4] Shanxi Univ, Inst Mol Sci, Taiyuan 034000, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[6] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Biosensors, Nanjing 210023, Peoples R China
[7] Southwest Univ, Lab Luminescence Anal & Mol Sensing, Sch Chem & Chem Engn, Minist Educ, Chongqing 400715, Peoples R China
[8] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[9] Natl Univ Singapore, Dept Biomed Engn, 4 Engn Dr 3, Singapore 117583, Singapore
[10] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
基金
新加坡国家研究基金会;
关键词
amplified photoluminescence; amplified ROS generation; enriched defects; molybdenum sulfide quantum dots; photonics; OPTICAL-PROPERTIES; MOS2; NANOSHEETS; ENHANCEMENT; STOICHIOMETRY; EXFOLIATION; STABILITY; DYNAMICS; FACILE;
D O I
10.1002/adma.202200004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal dichalcogenide (TMD) quantum dots (QDs) with defects have attracted interesting chemistry due to the contribution of vacancies to their unique optical, physical, catalytic, and electrical properties. Engineering defined defects into molybdenum sulfide (MoS2) QDs is challenging. Herein, by applying a mild biomineralization-assisted bottom-up strategy, blue photoluminescent MoS2 QDs (B-QDs) with a high density of defects are fabricated. The two-stage synthesis begins with a bottom-up synthesis of original MoS2 QDs (O-QDs) through chemical reactions of Mo and sulfide ions, followed by alkaline etching that creates high sulfur-vacancy defects to eventually form B-QDs. Alkaline etching significantly increases the photoluminescence (PL) and photo-oxidation. An increase in defect density is shown to bring about increased active sites and decreased bandgap energy; which is further validated with density functional theory calculations. There is strengthened binding affinity between QDs and O-2 due to lower gap energy ( increment E-ST) between S-1 and T-1, accompanied with improved intersystem crossing (ISC) efficiency. Lowered gap energy contributes to assist e(-)-h(+) pair formation and the strengthened binding affinity between QDs and O-3(2). Defect engineering unravels another dimension of material properties control and can bring fresh new applications to otherwise well characterized TMD nanomaterials.
引用
收藏
页数:16
相关论文
共 58 条
[1]   XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions [J].
Baker, MA ;
Gilmore, R ;
Lenardi, C ;
Gissler, W .
APPLIED SURFACE SCIENCE, 1999, 150 (1-4) :255-262
[2]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[3]   Effects of particle size and edge structure on the electronic structure, spectroscopic features, and chemical properties of Au(111)-supported MoS2 nanoparticles [J].
Bruix, Albert ;
Lauritsen, Jeppe V. ;
Hammer, Bjork .
FARADAY DISCUSSIONS, 2016, 188 :323-343
[4]   Observation of Ultrafast Free Carrier Dynamics in Single Layer MoS2 [J].
Cabo, Antonija Grubisic ;
Miwa, Jill A. ;
Gronborg, Signe S. ;
Riley, Jonathon M. ;
Johannsen, Jens C. ;
Cacho, Cephise ;
Alexander, Oliver ;
Chapman, Richard T. ;
Springate, Emma ;
Grioni, Marco ;
Lauritsen, Jeppe V. ;
King, Phil D. C. ;
Hofmann, Philip ;
Ulstrup, Soren .
NANO LETTERS, 2015, 15 (09) :5883-5887
[5]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[6]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[7]   Defect engineered bioactive transition metals dichalcogenides quantum dots [J].
Ding, Xianguang ;
Peng, Fei ;
Zhou, Jun ;
Gong, Wenbin ;
Slaven, Garaj ;
Loh, Kian Ping ;
Lim, Chwee Teck ;
Leong, David Tai .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Probing the "Dark" Fraction of Core-Shell Quantum Dots by Ensemble and Single Particle pH-Dependent Spectroscopy [J].
Durisic, Nela ;
Godin, Antoine G. ;
Walters, Derrel ;
Gruetter, Peter ;
Wiseman, Paul W. ;
Heyes, Colin D. .
ACS NANO, 2011, 5 (11) :9062-9073
[9]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[10]   Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering [J].
Ford, Brian ;
Tabassum, Natasha ;
Nikas, Vasileios ;
Gallis, Spyros .
MATERIALS, 2017, 10 (04)