Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata

被引:70
作者
Ammam, Fariza [1 ]
Tremblay, Pier-Luc [1 ,2 ]
Lizak, Dawid M. [1 ]
Zhang, Tian [1 ,2 ]
机构
[1] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark
[2] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Peoples R China
关键词
Microbial electrosynthesis; Gas fermentation; Medium optimization; Sporomusa ovata; Aldehyde ferredoxin oxidoreductase; CLOSTRIDIUM-THERMOACETICUM; FORMATE DEHYDROGENASE; CARBON-DIOXIDE; SYNGAS; CO2; CONVERSION; REDUCTION; FERMENTATION; BUTANOL; ENZYMES;
D O I
10.1186/s13068-016-0576-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H-2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the only product generated by S. ovata during autotrophic growth. Results: In this study, trace elements in S. ovata growth medium were optimized to improve MES and gas fermentation productivity. Augmenting tungstate concentration resulted in a 2.9-fold increase in ethanol production by S. ovata during H-2:CO2-dependent growth. It also promoted electrosynthesis of ethanol in a S. ovata-driven MES reactor and increased acetate production 4.4-fold compared to unmodified medium. Furthermore, fatty acids propionate and butyrate were successfully converted to their corresponding alcohols 1-propanol and 1-butanol by S. ovata during gas fermentation. Increasing tungstate concentration enhanced conversion efficiency for both propionate and butyrate. Gene expression analysis suggested that tungsten-containing aldehyde ferredoxin oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. Conclusions: This study presented here shows that optimization of microbial catalyst growth medium can improve productivity and lead to the biosynthesis of different products by gas fermentation and MES. It also provides insights on the metabolism of biofuels production in acetogens and demonstrates that S. ovata has an important untapped metabolic potential for the production of other chemicals than acetate via CO2-converting bioprocesses including MES.
引用
收藏
页数:10
相关论文
共 43 条
[1]   Clostridium carboxidivorans Strain P7T Recombinant Formate Dehydrogenase Catalyzes Reduction of CO2 to Formate [J].
Alissandratos, Apostolos ;
Kim, Hye-Kyung ;
Matthews, Hayden ;
Hennessy, James E. ;
Philbrook, Amy ;
Easton, Christopher J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (02) :741-744
[2]   Metabolome Remodeling during the Acidogenic-Solventogenic Transition in Clostridium acetobutylicum [J].
Amador-Noguez, Daniel ;
Brasg, Ian A. ;
Feng, Xiao-Jiang ;
Roquet, Nathaniel ;
Rabinowitz, Joshua D. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (22) :7984-7997
[3]   FORMATE DEHYDROGENASE OF CLOSTRIDIUM-THERMOACETICUM - INCORPORATION OF SELENIUM-75, AND EFFECTS OF SELENITE, MOLYBDATE, AND TUNGSTATE ON ENZYME [J].
ANDREESE.JR ;
LJUNGDAH.LG .
JOURNAL OF BACTERIOLOGY, 1973, 116 (02) :867-873
[4]   Tungsten, the surprisingly positively acting heavy metal element for prokaryotes [J].
Andreesen, Jan R. ;
Makdessi, Kathrin .
INCREDIBLE ANAEROBES: FROM PHYSIOLOGY TO GENOMICS TO FUELS, 2008, 1125 :215-229
[5]   Microbial enzymes involved in carbon dioxide fixation [J].
Atomi, H .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2002, 94 (06) :497-505
[6]   Metal centers in the anaerobic microbial metabolism of CO and CO2 [J].
Bender, Guenes ;
Pierce, Elizabeth ;
Hill, Jeffrey A. ;
Darty, Joseph E. ;
Ragsdale, Stephen W. .
METALLOMICS, 2011, 3 (08) :797-815
[7]   Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria [J].
Bertsch, Johannes ;
Mueller, Volker .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[8]   Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction [J].
Blanchet, Elise ;
Duquenne, François ;
Rafrafi, Yan ;
Etcheverry, Luc ;
Erable, Benjamin ;
Bergel, Alain .
Energy and Environmental Science, 2015, 8 (12) :3731-3744
[9]   PRODUCTION AND UTILIZATION OF ETHANOL BY THE HOMOACETOGEN ACETOBACTERIUM-WOODII [J].
BUSCHHORN, H ;
DURRE, P ;
GOTTSCHALK, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (07) :1835-1840
[10]   Bioinorganic chemistry - Hydrogenase sophistication [J].
Cammack, R .
NATURE, 1999, 397 (6716) :214-215