A Comparison Study of Different Kernel Functions for SVM-based Classification of Multi-temporal Polarimetry SAR Data

被引:50
作者
Yekkehkhany, B. [1 ]
Safari, A. [1 ]
Homayouni, S. [2 ]
Hasanlou, M. [1 ]
机构
[1] Univ Tehran, Coll Engn, Dept Geomat Engn, Tehran 14174, Iran
[2] Univ Ottawa, Dept Geog, Ottawa, ON K1N 6N5, Canada
来源
1ST ISPRS INTERNATIONAL CONFERENCE ON GEOSPATIAL INFORMATION RESEARCH | 2014年 / 40卷 / 2/W3期
关键词
Full-polarimetric SAR data; multi-temporal data; SVM; kernel functions; cop classification; CROPS;
D O I
10.5194/isprsarchives-XL-2-W3-281-2014
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/alpha decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.
引用
收藏
页码:281 / 285
页数:5
相关论文
共 17 条
[1]   USE OF THE SVM CLASSIFICATION WITH POLARIMETRIC SAR DATA FOR LAND USE CARTOGRAPHY [J].
Lardeux, Cedric ;
Frison, Pierr-Louis ;
Rudant, Jean-Paul ;
Souyris, Jean-Claude ;
Tison, Celine ;
Stoll, Benoit .
2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, :493-+
[2]  
Lee J. S., 1994, GEOSC REM SENS S 199, V4, P2179
[3]   Unsupervised classification using polarimetric decomposition and the complex Wishart classifier [J].
Lee, JS ;
Grunes, MR ;
Ainsworth, TL ;
Du, LJ ;
Schuler, DL ;
Cloude, SR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (05) :2249-2258
[4]   Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR [J].
Lee, JS ;
Grunes, MR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (11) :2343-2351
[5]  
LEE JS, 2004, IEEE TTGRS, V42
[6]  
McNairn H., 2014, IEEE T GEOS IN PRESS
[7]  
Mountrakis G., 2010, ISPRS J PHOTOGRAMM, V1, P1
[8]   KNOWLEDGE-BASED CLASSIFICATION OF POLARIMETRIC SAR IMAGES [J].
PIERCE, LE ;
ULABY, FT ;
SARABANDI, K ;
DOBSON, MC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (05) :1081-1086
[9]   ASSESSMENT OF THE CAPABILITIES OF MULTITEMPORAL ERS-1 SAR DATA TO DISCRIMINATE BETWEEN AGRICULTURAL CROPS [J].
SCHOTTEN, CGJ ;
VANROOY, WWL ;
JANSSEN, LLF .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1995, 16 (14) :2619-2637
[10]   Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data [J].
Silva, Wagner F. ;
Rudorff, Bernardo F. T. ;
Formaggio, Antonio R. ;
Paradella, Waldir R. ;
Mura, Jose C. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (05) :458-463