Hyperelliptic Functions and Motion in General Relativity

被引:0
作者
Grunau, Saskia [1 ]
Kunz, Jutta [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
关键词
hyperelliptic functions; geodesic motion; black holes; SUPERMASSIVE BLACK-HOLES; GRAVITATIONAL COLLAPSE; GEODESIC EQUATIONS; KERR; KERR-(ANTI); DIMENSIONS; INVERSION; ORBITS; BINARY; LIGHT;
D O I
10.3390/math10121958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analysis of black hole spacetimes requires study of the motion of particles and light in these spacetimes. Here exact solutions of the geodesic equations are the means of choice. Numerous interesting black hole spacetimes have been analyzed in terms of elliptic functions. However, the presence of a cosmological constant, higher dimensions or alternative gravity theories often necessitate an analysis in terms of hyperelliptic functions. Here we review the method and current status for solving the geodesic equations for the general hyperelliptic case, illustrating it with a set of examples of genus g=2: higher dimensional Schwarzschild black holes, rotating dyonic U(1)(2) black holes, and black rings.
引用
收藏
页数:20
相关论文
共 83 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole [J].
Akiyama, Kazunori ;
Alberdi, Antxon ;
Alef, Walter ;
Asada, Keiichi ;
Azulay, Rebecca ;
Baczko, Anne-Kathrin ;
Ball, David ;
Balokovic, Mislav ;
Barrett, John ;
Bintley, Dan ;
Blackburn, Lindy ;
Boland, Wilfred ;
Bouman, Katherine L. ;
Bower, Geoffrey C. ;
Bremer, Michael ;
Brinkerink, Christiaan D. ;
Brissenden, Roger ;
Britzen, Silke ;
Broderick, Avery E. ;
Broguiere, Dominique ;
Bronzwaer, Thomas ;
Byun, Do-Young ;
Carlstrom, John E. ;
Chael, Andrew ;
Chan, Chi-kwan ;
Chatterjee, Shami ;
Chatterjee, Koushik ;
Chen, Ming-Tang ;
Chen, Yongjun ;
Cho, Ilje ;
Christian, Pierre ;
Conway, John E. ;
Cordes, James M. ;
Crew, Geoffrey B. ;
Cui, Yuzhu ;
Davelaar, Jordy ;
De Laurentis, Mariafelicia ;
Deane, Roger ;
Dempsey, Jessica ;
Desvignes, Gregory ;
Dexter, Jason ;
Doeleman, Sheperd S. ;
Eatough, Ralph P. ;
Falcke, Heino ;
Fish, Vincent L. ;
Fomalont, Ed ;
Fraga-Encinas, Raquel ;
Freeman, William T. ;
Friberg, Per ;
Fromm, Christian M. .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (01)
[3]   Relativity in the global positioning system [J].
Neil Ashby .
Living Reviews in Relativity, 2003, 6 (1)
[4]  
Baker H. F., 1995, Abelian Functions. Abel's theorem and the allied theory of theta functions
[5]  
Bardeen J. M., 1973, P ECOLE DETE PHYS TH, P215
[6]   DIMENSIONS OF BINARY-SYSTEM HDE 226868 = CYGNUS X-1 [J].
BOLTON, CT .
NATURE-PHYSICAL SCIENCE, 1972, 240 (102) :124-&
[7]   STRING-GENERATED GRAVITY MODELS [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW LETTERS, 1985, 55 (24) :2656-2660
[8]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[9]   Astrophysical evidence for the existence of black holes [J].
Celotti, A ;
Miller, JC ;
Sciama, DW .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (12A) :A3-A21
[10]  
Chandrasekhar S., 1983, The Mathematical Theory of Black Holes