Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber

被引:69
作者
DeMott, Paul J. [1 ]
Hill, Thomas C. J. [1 ]
Petters, Markus D. [2 ]
Bertram, Allan K. [3 ]
Tobo, Yutaka [4 ,5 ]
Mason, Ryan H. [3 ]
Suski, Kaitlyn J. [1 ,12 ]
McCluskey, Christina S. [1 ]
Levin, Ezra J. T. [1 ]
Schill, Gregory P. [1 ]
Boose, Yvonne [6 ]
Rauker, Anne Marie [1 ]
Miller, Anna J. [7 ]
Zaragoza, Jake [1 ,13 ]
Rocci, Katherine [8 ]
Rothfuss, Nicholas E. [2 ]
Taylor, Hans P. [2 ]
Hader, John D. [2 ]
Chou, Cedric [3 ]
Huffman, J. Alex [9 ]
Poeschl, Ulrich [10 ]
Prenni, Anthony J. [11 ]
Kreidenweis, Sonia M. [1 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[2] North Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
[3] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[4] Natl Inst Polar Res, Tachikawa, Tokyo 1908518, Japan
[5] SOKENDAI Grad Sch Adv Studies, Dept Polar Sci, Sch Multidisciplinary Sci, Tachikawa, Tokyo 1908518, Japan
[6] Inst Meteorol & Climate Res IMK IFU, Karlsruhe Inst Technol, D-82467 Garmisch Partenkirchen, Germany
[7] Reed Coll, Dept Chem, Portland, OR 97202 USA
[8] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA
[9] Univ Denver, Dept Chem & Biochem, Denver, CO 80210 USA
[10] Max Planck Inst Chem, Dept Multiphase Chem, D-55128 Mainz, Germany
[11] Natl Pk Serv, Air Resources Div, Lakewood, CO 80228 USA
[12] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[13] Air Resource Specialists, Ft Collins, CO 80525 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会; 日本学术振兴会;
关键词
BIOLOGICAL AEROSOL-PARTICLES; NUCLEI POPULATIONS; PRECIPITATION; SITE; QUANTIFY; BEHAVIOR; IMPACTS; FIELD; TIME;
D O I
10.5194/acp-17-11227-2017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A number of new measurement methods for ice nucleating particles (INPs) have been introduced in recent years, and it is important to address how these methods compare. Laboratory comparisons of instruments sampling major INP types are common, but few comparisons have occurred for ambient aerosol measurements exploring the utility, consistency and complementarity of different methods to cover the large dynamic range of INP concentrations that exists in the atmosphere. In this study, we assess the comparability of four offline immersion freezing measurement methods (Colorado State University ice spectrometer, IS; North Carolina State University cold stage, CS; National Institute for Polar Research Cryogenic Refrigerator Applied to Freezing Test, CRAFT; University of British Columbia micro-orifice uniform deposit impactor-droplet freezing technique, MOUDI-DFT) and an online method (continuous flow diffusion chamber, CFDC) used in a manner deemed to promote/maximize immersion freezing, for the detection of INPs in ambient aerosols at different locations and in different sampling scenarios. We also investigated the comparability of different aerosol collection methods used with offline immersion freezing instruments. Excellent agreement between all methods could be obtained for several cases of co-sampling with perfect temporal overlap. Even for sampling periods that were not fully equivalent, the deviations between atmospheric INP number concentrations measured with different methods were mostly less than 1 order of magnitude. In some cases, however, the deviations were larger and not explicable without sampling and measurement artifacts. Overall, the immersion freezing methods seem to effectively capture INPs that activate as single particles in the modestly supercooled temperature regime (> -20 degrees C), although more comparisons are needed in this temperature regime that is difficult to access with online methods. Relative to the CFDC method, three immersion freezing methods that disperse particles into a bulk liquid (IS, CS, CRAFT) exhibit a positive bias in measured INP number concentrations below -20 degrees C, increasing with decreasing temperature. This bias was present but much less pronounced for a method that condenses separate water droplets onto limited numbers of particles prior to cooling and freezing (MOUDI-DFT). Potential reasons for the observed differences are discussed, and further investigations proposed to elucidate the role of all factors involved.
引用
收藏
页码:11227 / 11245
页数:19
相关论文
共 45 条
  • [1] Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles
    Beall, Charlotte M.
    Stokes, M. Dale
    Hill, Thomas C.
    DeMott, Paul J.
    DeWald, Jesse T.
    DeWald, Jesse T.
    Prather, Kimberly A.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (07) : 2613 - 2626
  • [2] Ice nucleating particles in the Saharan Air Layer
    Boose, Yvonne
    Sierau, Berko
    Isabel Garcia, M.
    Rodriguez, Sergio
    Alastuey, Andres
    Linke, Claudia
    Schnaiter, Martin
    Kupiszewski, Piotr
    Kanji, Zamin A.
    Lohmann, Ulrike
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (14) : 9067 - 9087
  • [3] Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles
    DeMott, P. J.
    Prenni, A. J.
    McMeeking, G. R.
    Sullivan, R. C.
    Petters, M. D.
    Tobo, Y.
    Niemand, M.
    Moehler, O.
    Snider, J. R.
    Wang, Z.
    Kreidenweis, S. M.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) : 393 - 409
  • [4] Predicting global atmospheric ice nuclei distributions and their impacts on climate
    DeMott, P. J.
    Prenni, A. J.
    Liu, X.
    Kreidenweis, S. M.
    Petters, M. D.
    Twohy, C. H.
    Richardson, M. S.
    Eidhammer, T.
    Rogers, D. C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (25) : 11217 - 11222
  • [5] DeMott P. J., 2017, ATMOS CHEM PHYS
  • [6] Sea spray aerosol as a unique source of ice nucleating particles
    DeMott, Paul J.
    Hill, Thomas C. J.
    McCluskey, Christina S.
    Prather, Kimberly A.
    Collins, Douglas B.
    Sullivan, Ryan C.
    Ruppel, Matthew J.
    Mason, Ryan H.
    Irish, Victoria E.
    Lee, Taehyoung
    Hwang, Chung Yeon
    Rhee, Tae Siek
    Snider, Jefferson R.
    McMeeking, Gavin R.
    Dhaniyala, Suresh
    Lewis, Ernie R.
    Wentzell, Jeremy J. B.
    Abbatt, Jonathan
    Lee, Christopher
    Sultana, Camille M.
    Ault, Andrew P.
    Axson, Jessica L.
    Martinez, Myrelis Diaz
    Venero, Ingrid
    Santos-Figueroa, Gilmarie
    Stokes, M. Dale
    Deane, Grant B.
    Mayol-Bracero, Olga L.
    Grassian, Vicki H.
    Bertram, Timothy H.
    Bertram, Allan K.
    Moffett, Bruce F.
    Franc, Gary D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (21) : 5797 - 5803
  • [7] Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud
    Eidhammer, T.
    DeMott, P. J.
    Prenni, A. J.
    Petters, M. D.
    Twohy, C. H.
    Rogers, D. C.
    Stith, J.
    Heymsfield, A.
    Wang, Z.
    Pratt, K. A.
    Prather, K. A.
    Murphy, S. M.
    Seinfeld, J. H.
    Subramanian, R.
    Kreidenweis, S. M.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2010, 67 (08) : 2417 - 2436
  • [8] Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles
    Emersic, C.
    Connolly, P. J.
    Boult, S.
    Campana, M.
    Li, Z.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (19) : 11311 - 11326
  • [9] Biogenic ice nuclei in boundary layer air over two U.S. High Plains agricultural regions
    Garcia, Elvin
    Hill, Thomas C. J.
    Prenni, Anthony J.
    DeMott, Paul J.
    Franc, Gary D.
    Kreidenweis, Sonia M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [10] Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
    Garimella, Sarvesh
    Rothenberg, Daniel A.
    Wolf, Martin J.
    David, Robert O.
    Kanji, Zamin A.
    Wang, Chien
    Rosch, Michael
    Cziczo, Daniel J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (17) : 10855 - 10864