Free-space optical communications systems provide the opportunity to take advantage of higher data transfer rates and lower probability of intercept compared to radio-frequency communications. However, propagation through atmospheric turbulence, such as for airborne laser communication over long paths, results in intensity variations at the receiver and a corresponding degradation in bit error rate (BER) performance. Previous literature has shown that two transmitters, when separated sufficiently, can effectively average out the intensity varying effects of the atmospheric turbulence at the receiver. This research explores the impacts of adding more transmitters and the marginal reduction in the probability of signal fades while minimizing the overall transmitter footprint, an important design factor when considering an airborne communications system. Analytical results for the cumulative distribution function are obtained for tilt-only results, while wave-optics simulations are used to simulate the effects of scintillation. These models show that the probability of signal fade is reduced as the number of transmitters is increased.