Ground state and nodal solutions for a class of double phase problems

被引:47
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Repovs, Dusan D. [4 ,5 ,6 ]
机构
[1] Natl Tech Univ, Dept Math, Zografou Campus, Zografos 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 71卷 / 01期
关键词
Double phase operator; Weight function; Superlinear reaction; Nehari manifold; Ground state solution; Nodal solution; REGULARITY; EXISTENCE; EQUATIONS;
D O I
10.1007/s00033-019-1239-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a double phase problem driven by the sum of the p-Laplace operator and a weighted q-Laplacian (q < p), with a weight function which is not bounded away from zero. The reaction term is (p - 1)-superlinear. Employing the Nehari method, we show that the equation has a ground state solution of constant sign and a nodal (sign-changing) solution.
引用
收藏
页数:15
相关论文
共 33 条