On the spectrum of a rank two modification of a diagonal matrix for linearized fluxes modelling polydisperse sedimentation

被引:0
作者
Berres, Stefan [1 ]
Voitovich, Tatiana [1 ]
机构
[1] Univ Catolica Temuco, Fac Ingn, Temuco, Chile
来源
HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2 | 2009年 / 67卷
关键词
Rank two modification; Jacobian matrix; conservation law; polydisperse suspension; non-genuinely nonlinear system; DIFFERENT SIZES; FRONT TRACKING; GRAVITY SEPARATION; SUSPENSIONS; PARTICLES; SCHEMES; SYSTEMS; DENSITIES; SPHERES; FLOW;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum of a rank two modification of a diagonal matrix is calculated. The underlying matrix structure appears as the Jacobian matrix of a flux function of a first-order partial differential equation modelling dispersed solid-liquid flow. It is shown that, under physically reasonable conditions, there is a complete set of real roots of the characteristic polynomial. This contribution reexamines the analysis of (Basson, Berres and Burger, Appl. Math. Mod., 2008) by using the tools developed in (Donat and Mu let, Num. Meth. of PDE, 2009). The considered system belongs to a generic class of strictly hyperbolic, but non-genuinely nonlinear systems of conservation laws. For illustration, the solution of a benchmark initial-value problem is studied.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 31 条