This paper presents a method to diagnose prostate cancer on multiparametric magnetic resonance imaging (Mp-MRI) using the shearlet transform. The objective is classification of benign and malignant regions on transverse relaxation time weighted (T2W), dynamic contrast enhanced (DCE), and apparent diffusion coefficient (ADC) images. Compared with conventional wavelet filters, shearlet has inherent directional sensitivity, which makes it suitable for characterizing small contours of cancer cells. By applying a multi-scale decomposition, the shearlet transform captures visual information provided by edges detected at different orientations and multiple scales in each region of interest (ROI) of the images. ROIs are represented by histograms of shearlet coefficients (HSC) and then used as features in Support Vector Machines (SVM) to classify ROIs as benign or malignant. Experimental results show that our method can recognize carcinoma in T2W, DCE, and ADC with overall sensitivity of 92%, 100%, and 89%, respectively. Hence, application of shearlet transform may further increase utility of Mp-MRI for prostate cancer diagnosis.