Molecular mechanism of apoptosis: prediction of three-dimensional structure of caspase-6 and its interactions by homology modeling

被引:10
作者
Sattar, R [1 ]
Ali, SA [1 ]
Abbasi, A [1 ]
机构
[1] Univ Karachi, HEJ Res Inst Chem, Int Ctr Chem Sci, Karachi 75270, Pakistan
关键词
apoptosis; caspase-6; caspase-8; programmed cell death; enzyme-inhibitor complex; homology modeling; cysteine proteinases; structure prediction;
D O I
10.1016/S0006-291X(03)01394-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Caspases, the intracellular cysteine proteinases, play a central role in the process of programmed cell death. Caspases induce apoptosis through a highly integrated and regulated biological, biochemical, and genetic mechanism. Although proper execution of apoptosis is fundamental for cell growth artificial caspase inhibition can be considered in certain degenerative diseases. This realization has attracted attention towards caspases as likely targets for pharmaceutical intervention. Here we analyze the structure of caspase-6 and also predict the possible glycosylation, phosphorylation, and myristoylation sites as very little is known about the functional role of these post translational modifications in the caspase family. These studies are expected to improve our understanding of associations of caspases with other molecules and the possible role played in apoptosis. The predicted tertiary structure of caspase-6 as well as the enzyme complexed with its inhibitor (tetra-peptide aldehyde Ac-IETD-CHO) shows similar binding feature as seen in other caspases. Cys/His catalytic dyad for caspase-6 and -8 show possible involvement of a third component, i.e., Pro29 and Arg258 in caspase-6 and caspase-8, respectively. Changes in the length and nature of loop between alpha5 and beta9, involved in defining the S4 subsite, result in modification of P4 (Ile) site. These interactions provide detail of inhibitor binding on structural level and also help in designing mutants for structure-function studies of these enzymes. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:497 / 504
页数:8
相关论文
共 34 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   THE SWISS-PROT PROTEIN-SEQUENCE DATA-BANK [J].
BAIROCH, A ;
BOECKMANN, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 :2247-2248
[3]   The PROSITE database, its status in 1997 [J].
Bairoch, A ;
Bucher, P ;
Hofmann, K .
NUCLEIC ACIDS RESEARCH, 1997, 25 (01) :217-221
[4]  
BERSTEIN FC, 1977, J MOL BIOL, V112, P535
[5]   The three-dimensional structure of caspase-8:: an initiator enzyme in apoptosis [J].
Blanchard, H ;
Kodandapani, L ;
Mittl, PRE ;
Di Marco, S ;
Krebs, JF ;
Wu, JC ;
Tomaselli, KJ ;
Grütter, MG .
STRUCTURE, 1999, 7 (09) :1125-1133
[6]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[7]   Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2 [J].
Cauwels, A ;
Janssen, B ;
Waeytens, A ;
Cuvelier, C ;
Brouckaert, P .
NATURE IMMUNOLOGY, 2003, 4 (04) :387-393
[8]   Activation of apoptosis signal regulating kinase 1 (ASK1) by the adapter protein Daxx [J].
Chang, HY ;
Nishitoh, H ;
Yang, XL ;
Ichijo, H ;
Baltimore, D .
SCIENCE, 1998, 281 (5384) :1860-1863
[9]   Prediction of the tertiary structure of a caspase-9/inhibitor complex [J].
Chou, KC ;
Tomasselli, AG ;
Heinrikson, RL .
FEBS LETTERS, 2000, 470 (03) :249-256
[10]   Apoptosis: Does stress kill? [J].
Cosulich, S ;
Clarke, P .
CURRENT BIOLOGY, 1996, 6 (12) :1586-1588