A nonlocal convection-diffusion equation

被引:115
作者
Ignat, Liviu I. [1 ]
Rossi, Julio D.
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] Acad Romana, Inst Math, RO-014700 Bucharest, Romania
关键词
nonlocal diffusion; convection-diffusion; asymptotic behaviour;
D O I
10.1016/j.jfa.2007.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, u(t) = J * u - u + G * (f(u)) - f(u) in R-d, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation u(t) = Delta u + b . del(f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t -> infinity when f (u) = |u|(q-1) u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 437
页数:39
相关论文
共 20 条
[1]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[2]   A discrete convolution model for phase transitions [J].
Bates, PW ;
Chmaj, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) :281-305
[3]  
Brenner P., 1975, LECT NOTES MATH, V434
[4]   Spatial effects in discrete generation population models [J].
Carrillo, C ;
Fife, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (02) :161-188
[5]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[6]  
Chen X., 1997, ADV DIFFERENTIAL EQU, V2, P125
[7]   A nonlocal diffusion equation whose solutions develop a free boundary [J].
Cortazar, C ;
Elgueta, M ;
Rossi, JD .
ANNALES HENRI POINCARE, 2005, 6 (02) :269-281
[8]  
CORTAZAR C, IN PRESS ARCH RATION
[9]   Boundary fluxes for nonlocal diffusion [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Rossi, Julio D. ;
Wolanski, Noemi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) :360-390
[10]  
DALIO F, IN PRESS J EUR MATH