Combining Data Clusterings with Instance Level Constraints

被引:0
作者
Duarte, Joao M. M. [1 ,2 ]
Fred, Ana L. N. [2 ]
Duarte, F. Jorge F. [1 ]
机构
[1] Inst Super Politecn, Inst Super Engn Porto, GECAD Knowledge Engn & Decis Support Grp, Oporto, Portugal
[2] Inst Super Tecn, Inst Telecomun, Lisbon, Portugal
来源
PATTERN RECOGNITION IN INFORMATION SYSTEMS, PROCEEDINGS | 2009年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work has focused the incorporation of a priori know-ledge into the data clustering process, in the form of pairwise constraints, aiming to improve clustering quality and find appropriate clustering solutions to specific tasks or interests. In this work, we integrate must-link and cannot-link constraints into the cluster ensemble framework. Two algorithms for combining multiple data partitions with instance level constraints are proposed. The first one consists of a modification to Evidence Accumulation Clustering and the second one maximizes both the similarity between the cluster ensemble and the target consensus partition, and constraint satisfaction using a genetic algorithm. Experimental results shown that the proposed constrained clustering combination methods performances are superior to the unconstrained Evidence Accumulation Clustering.
引用
收藏
页码:49 / +
页数:3
相关论文
共 15 条
[1]  
BASU S, 2005, THESIS AUSTIN
[2]  
Basu S, 2009, CH CRC DATA MIN KNOW, P1
[3]  
Davidson I, 2005, SIAM PROC S, P138
[4]  
DUARTE FJ, 2008, THESI SU TRAS OS MON
[5]  
DUARTE FJ, 2006, 6 INT WORKSH PATT RE
[6]  
Fern X.Z., 2004, P 21 INT C MACH LEAR, P36, DOI DOI 10.1145/1015330.1015414
[7]  
Fred A., 2001, Multiple Classifier Systems. Second International Workshop, MCS 2001. Proceedings (Lecture Notes in Computer Science Vol.2096), P309
[8]   Combining multiple clusterings using evidence accumulation [J].
Fred, ALN ;
Jain, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) :835-850
[9]  
Ge R, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P320
[10]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323