Artificial Intelligence for Breast Ultrasound: Will It Impact Radiologists' Accuracy?

被引:6
作者
Bahl, Manisha [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; breast density; deep learning; reader study; screening ultrasound;
D O I
10.1093/jbi/wbab022
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:3
相关论文
共 16 条
[1]   Artificial Intelligence: A Primer for Breast Imaging Radiologists [J].
Bahl, Manisha .
JOURNAL OF BREAST IMAGING, 2020, 2 (04) :304-314
[2]   Detecting Breast Cancers with Mammography: Will AI Succeed Where Traditional CAD Failed? [J].
Bahl, Manisha .
RADIOLOGY, 2019, 290 (02) :315-316
[3]   Impact of Data Presentation on Physician Performance Utilizing Artificial Intelligence-Based Computer-Aided Diagnosis and Decision Support Systems [J].
Barinov, L. ;
Jairaj, A. ;
Becker, M. ;
Seymour, S. ;
Lee, E. ;
Schram, A. ;
Lane, E. ;
Goldszal, A. ;
Quigley, D. ;
Paster, L. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (03) :408-416
[4]  
Berg WA, J BREAST IMAGING, V3, P301
[5]   Screening Breast Ultrasound Using Handheld or Automated Technique in Women with Dense Breasts [J].
Berg, Wendie A. ;
Vourtsis, Athina .
JOURNAL OF BREAST IMAGING, 2019, 1 (04) :283-296
[6]   Screening Breast Ultrasound: Past, Present, and Future [J].
Brem, Rachel F. ;
Lenihan, Megan J. ;
Lieberman, Jennifer ;
Torrente, Jessica .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2015, 204 (02) :234-240
[7]   Screening Breast Ultrasound: Update After 10 Years of Breast Density Notification Laws [J].
Butler, Reni S. ;
Hooley, Regina J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 214 (06) :1424-1435
[8]   Effect of a Deep Learning Framework-Based Computer- Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography [J].
Choi, Ji Soo ;
Han, Boo-Kyung ;
Ko, Eun Sook ;
Bae, Jung Min ;
Ko, Eun Young ;
Song, So Hee ;
Kwon, Mi-ri ;
Shin, Jung Hee ;
Hahn, Soo Yeon .
KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (05) :749-758
[9]   One step further into the blackbox: a pilot study of how to build more confidence around an AI-based decision system of breast nodule assessment in 2D ultrasound [J].
Dong, Fajin ;
She, Ruilian ;
Cui, Chen ;
Shi, Siyuan ;
Hu, Xuqiao ;
Zeng, Jieying ;
Wu, Huaiyu ;
Xu, Jinfeng ;
Zhang, Yun .
EUROPEAN RADIOLOGY, 2021, 31 (07) :4991-5000
[10]   Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives [J].
Geras, Krzysztof J. ;
Mann, Ritse M. ;
Moy, Linda .
RADIOLOGY, 2019, 293 (02) :246-259