Abelian groups, Gauss periods, and normal bases

被引:12
|
作者
Gao, SH [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
finite fields; finite abelian groups; Gauss periods; normal bases;
D O I
10.1006/ffta.2000.0304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result on finite abelian groups is first proved and then used to solve problems in finite fields. Particularly, all finite fields that have normal bases generated by general Gauss periods are characterized and it is shown how to find normal bases of low complexity. (C) 2000 Academic Press.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 50 条
  • [41] Unique sums and differences in finite Abelian groups
    Leung, Ka Hin
    Schmidt, Bernhard
    JOURNAL OF NUMBER THEORY, 2022, 233 : 370 - 388
  • [42] THE NORM OF THE FOURIER TRANSFORM ON FINITE ABELIAN GROUPS
    Gilbert, John
    Rzeszotnik, Ziemowit
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (04) : 1317 - 1346
  • [43] Counting subset sums of finite abelian groups
    Li, Jiyou
    Wan, Daqing
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 170 - 182
  • [44] SUBGROUP INTERSECTION GRAPH OF FINITE ABELIAN GROUPS
    Chelvam, T. Tamizh
    Sattanathan, M.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (03) : 5 - 10
  • [45] Low complexity of a class of normal bases over finite fields
    Liao, Qunying
    You, Lin
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 1 - 14
  • [46] Polynomial and normal bases for finite fields
    von zur Gathen, J
    Nöcker, M
    JOURNAL OF CRYPTOLOGY, 2005, 18 (04) : 337 - 355
  • [47] Equality cases for the uncertainty principle in finite Abelian groups
    Aline Bonami
    SaifAllah Ghobber
    Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 507 - 528
  • [48] On long minimal zero sequences in finite abelian groups
    Gao W.
    Geroldinger A.
    Periodica Mathematica Hungarica, 1999, 38 (3) : 179 - 211
  • [49] Pseudo-differential operators on finite Abelian groups
    Shahla Molahajloo
    K. L. Wong
    Journal of Pseudo-Differential Operators and Applications, 2015, 6 : 1 - 9
  • [50] The separating Noether number of abelian groups of rank two
    Schefler, Barna
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 209