Abelian groups, Gauss periods, and normal bases

被引:12
|
作者
Gao, SH [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
finite fields; finite abelian groups; Gauss periods; normal bases;
D O I
10.1006/ffta.2000.0304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result on finite abelian groups is first proved and then used to solve problems in finite fields. Particularly, all finite fields that have normal bases generated by general Gauss periods are characterized and it is shown how to find normal bases of low complexity. (C) 2000 Academic Press.
引用
收藏
页码:149 / 164
页数:16
相关论文
共 50 条
  • [1] Gauss periods as constructions of low complexity normal bases
    Christopoulou, M.
    Garefalakis, T.
    Panario, D.
    Thomson, D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (01) : 43 - 62
  • [2] Gauss periods as constructions of low complexity normal bases
    M. Christopoulou
    T. Garefalakis
    D. Panario
    D. Thomson
    Designs, Codes and Cryptography, 2012, 62 : 43 - 62
  • [3] MULTIPLICATIVE ORDER OF GAUSS PERIODS
    Ahmadi, Omran
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (04) : 877 - 882
  • [4] Gauss periods: Orders and cryptographical applications
    Gao, SH
    Von zur Gathen, J
    Panario, D
    MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 343 - 352
  • [5] Orders of Gauss periods in finite fields
    von zur Gathen, J
    Shparlinski, I
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1998, 9 (01) : 15 - 24
  • [6] ORDER OF GAUSS PERIODS IN LARGE CHARACTERISTIC
    Chang, Mei-Chu
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 621 - 628
  • [7] CONSTRUCTION OF SELF-DUAL INTEGRAL NORMAL BASES IN ABELIAN EXTENSIONS OF FINITE AND LOCAL FIELDS
    Pickett, Erik Jarl
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (07) : 1565 - 1588
  • [8] The multisubset sum problem for finite abelian groups
    Muratovic-Ribic, Amela
    Wang, Qiang
    ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (02) : 417 - 423
  • [9] On capability of finite abelian groups
    Zoran Šunić
    Archiv der Mathematik, 2009, 93 : 23 - 28
  • [10] On Unique Sums in Abelian Groups
    Benjamin Bedert
    Combinatorica, 2024, 44 : 269 - 298