Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables

被引:4
|
作者
Anastasiou, Andreas [1 ]
机构
[1] London Sch Econ & Polit Sci, London, England
基金
英国工程与自然科学研究理事会;
关键词
Maximum likelihood estimator; Dependent random variables; Normal approximation; Stein's method; CENTRAL-LIMIT-THEOREM; ASYMPTOTIC NORMALITY; SUMS;
D O I
10.1016/j.spl.2017.04.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The asymptotic normality of the Maximum Likelihood Estimator (MLE) is a long established result. Explicit bounds for the distributional distance between the distribution of the MLE and the normal distribution have recently been obtained for the case of independent random variables. In this paper, a local dependence structure is introduced between the random variables and we give upper bounds which are specified for the Wasserstein metric. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 50 条
  • [1] On normal approximation for φ-mixing and m-dependent random variables
    Sunklodas, Jonas Kazys
    LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (04) : 524 - 546
  • [2] On normal approximation for φ-mixing and m-dependent random variables
    Jonas Kazys Sunklodas
    Lithuanian Mathematical Journal, 2023, 63 : 524 - 546
  • [3] Bounds for the normal approximation of the maximum likelihood estimator
    Anastasiou, Andreas
    Reinert, Gesine
    BERNOULLI, 2017, 23 (01) : 191 - 218
  • [4] Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator
    Anastasiou, Andreas
    Gaunt, Robert E.
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5758 - 5810
  • [5] Quantitative bounds in the central limit theorem for m-dependent random variables
    Janson, Svante
    Pratelli, Luca
    Rigo, Pietro
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 245 - 265
  • [6] On some approximations for sums of m-dependent random variables
    Jonas Kazys Sunklodas
    Lithuanian Mathematical Journal, 2023, 63 : 203 - 222
  • [7] Asymptotic normality of the log-likelihood ratio for a class of m-dependent random variables
    Pazizin, SV
    Ryazanov, BV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 43 (03) : 422 - 433
  • [8] Approximations related to the sums of m-dependent random variables
    Kumar, Amit N.
    Upadhye, Neelesh S.
    Vellaisamy, P.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (02) : 349 - 368
  • [9] Moderate deviation principle for m-dependent random variables*
    Yu Miao
    Jianan Zhu
    Jianyong Mu
    Lithuanian Mathematical Journal, 2018, 58 : 54 - 68
  • [10] Discrete approximations for sums of m-dependent random variables
    Cekanavicius, V.
    Vellaisamy, P.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2015, 12 (02): : 765 - 792