A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications

被引:127
|
作者
Kahwaji, Samer [1 ]
Johnson, Michel B. [2 ]
Kheirabadi, Ali C. [3 ]
Groulx, Dominic [2 ,3 ]
White, Mary Anne [1 ,2 ]
机构
[1] Dalhousie Univ, Dept Chem, POB 15000, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Clean Technol Res Inst, POB 15000, Halifax, NS B3H 4R2, Canada
[3] Dalhousie Univ, Dept Mech Engn, POB 15000, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Phase change material; PCM; Paraffin; Thermal properties; Thermal energy storage; LATENT-HEAT STORAGE; ION BATTERIES; THERMOPHYSICAL PROPERTIES; ELECTRONIC COMPONENTS; BUILDING APPLICATIONS; TRANSFER ENHANCEMENT; TEMPERATURE RISE; WATER-HEATER; FATTY-ACIDS; PCM;
D O I
10.1016/j.energy.2018.08.068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Paraffins are useful as phase change materials (PCMs) for thermal energy storage (TES) via their melting transition, Imps. Paraffins with T-mpt between 30 and 60 degrees C have particular utility in improving the efficiency of solar energy capture systems and for thermal buffering of electronics and batteries. However, there remain critical knowledge gaps concerning the properties of paraffin PCMs, including their long-term reliability and chemical compatibility. Therefore, we have undertaken a thorough, comprehensive study of the thermophysical properties, long-term stability and chemical compatibility of six widely useful paraffin PCMs. The PCMs investigated include three pure alkanes, nonadecane, eicosane, docosane, and three commercial blends of paraffin waxes. For each PCM, we accurately determined T-mpt, the latent heat of fusion, the density of the solid phase and the temperature dependences of the heat capacity and thermal conductivity. For the first time, we show the thermal stability of the PCMs after 3000 melt-freeze cycles, and their chemical compatibilities with 17 different metallic and plastic materials used for encapsulation and in composites and fillers. These results provide necessary information to improve energy modeling and analysis for existing and emerging TES applications, and guide the selection of reliable paraffin PCMs and encapsulation materials for such applications. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1169 / 1182
页数:14
相关论文
共 50 条
  • [1] Phase Change Materials for Applications in Building Thermal Energy Storage (Review)
    Habib, Md Ahsan
    Rahman, Muhammad Mustafizur
    THERMAL ENGINEERING, 2024, 71 (08) : 649 - 663
  • [2] Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
    Lin, Yaxue
    Jia, Yuting
    Alva, Guruprasad
    Fang, Guiyin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2730 - 2742
  • [3] Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials
    Liu, Chenzhen
    Zhang, Xuan
    Lv, Peizhao
    Li, Yimin
    Rao, Zhonghao
    PHASE TRANSITIONS, 2017, 90 (07) : 717 - 731
  • [4] Preparation and properties of paraffin/activated carbon composites as phase change materials for thermal energy storage
    Zhao, Liang
    Fang, Xiangchen
    Wang, Gang
    Xu, Hong
    PROGRESS IN RENEWABLE AND SUSTAINABLE ENERGY, PTS 1 AND 2, 2013, 608-609 : 1049 - 1053
  • [5] Biobased phase change materials in energy storage and thermal management technologies
    Simonsen, Galina
    Ravotti, Rebecca
    O'Neill, Poppy
    Stamatiou, Anastasia
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 184
  • [6] Exfoliated graphite/paraffin nanocomposites as phase change materials for thermal energy storage application
    Huang, J.
    Wang, T. Y.
    Wang, C. H.
    Rao, Z. H.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 (06) : 422 - 427
  • [7] Review on phase change materials for cold thermal energy storage applications
    Nie, Binjian
    Palacios, Anabel
    Zou, Boyang
    Liu, Jiaxu
    Zhang, Tongtong
    Li, Yunren
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 134
  • [8] Experimental investigations on thermal properties of nano-SiO2/paraffin phase change material (PCM) for solar thermal energy storage applications
    Kumar, P. Manoj
    Mylsamy, K.
    Saravanakumar, P. T.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2020, 42 (19) : 2420 - 2433
  • [9] Review on thermal energy storage with phase change materials and applications
    Sharma, Atul
    Tyagi, V. V.
    Chen, C. R.
    Buddhi, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (02) : 318 - 345
  • [10] Thermal properties and applications of form-stable phase change materials for thermal energy storage and thermal management: A review
    Fu, Tingwei
    Wang, Wenze
    Fang, Guiyin
    ENERGY STORAGE, 2024, 6 (01)