Automatic Segmentation of the Left Ventricle in Cardiac MRI Using Local Binary Fitting Model and Dynamic Programming Techniques

被引:24
作者
Hu, Huaifei [1 ]
Gao, Zhiyong [1 ]
Liu, Liman [1 ]
Liu, Haihua [1 ]
Gao, Junfeng [1 ]
Xu, Shengzhou [2 ]
Li, Wei [1 ]
Huang, Lu [3 ]
机构
[1] South Cent Univ Nationalities, Coll Biomed Engn, Wuhan, Peoples R China
[2] South Cent Univ Nationalities, Coll Comp Sci, Wuhan, Peoples R China
[3] Huazhong Univ Sci & Technol, Dept Radiol, Tongji Hosp, Wuhan 430074, Peoples R China
来源
PLOS ONE | 2014年 / 9卷 / 12期
基金
中国国家自然科学基金;
关键词
BORDER DETECTION; DISEASE;
D O I
10.1371/journal.pone.0114760
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Segmentation of the left ventricle is very important to quantitatively analyze global and regional cardiac function from magnetic resonance. The aim of this study is to develop a novel algorithm for segmenting left ventricle on short-axis cardiac magnetic resonance images (MRI) to improve the performance of computer-aided diagnosis (CAD) systems. In this research, an automatic segmentation method for left ventricle is proposed on the basis of local binary fitting (LBF) model and dynamic programming techniques. The validation experiments are performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 93.5%, the average perpendicular distance are about 2 mm. The overlapping dice metric is about 0.91. The regression and determination coefficient between the experts and our proposed method on the LV mass is 1.038 and 0.9033, respectively; they are 1.076 and 0.9386 for ejection fraction (EF). The proposed segmentation method shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases.
引用
收藏
页数:17
相关论文
共 30 条
[1]  
Al-Bayati Moumena, 2013, ADV BREAST CANC RES, V2, P72, DOI DOI 10.4236/ABCR.2013.23013
[2]   Endocardial Border Detection in Cardiac Magnetic Resonance Images Using Level Set Method [J].
Ammar, Mohammed ;
Mahmoudi, Said ;
Chikh, Mohammed Amine ;
Abbou, Amine .
JOURNAL OF DIGITAL IMAGING, 2012, 25 (02) :294-306
[3]   Semiautomated segmentation of myocardial contours for fast strain analysis in cine displacement-encoded MRI [J].
Chen, Ting ;
Babb, James ;
Kellman, Peter ;
Axel, Leon ;
Kim, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (08) :1084-1094
[4]  
Eslami A., 2012, Medical image analysis
[5]   Automatic cardiac ventricle segmentation in MR images: a validation study [J].
Grosgeorge, Damien ;
Petitjean, Caroline ;
Caudron, Jerome ;
Fares, Jeannette ;
Dacher, Jean-Nicolas .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2011, 6 (05) :573-581
[6]  
Hadhoud M.M.A., 2012, American Journal of Biomedical Engineering, V2, P131, DOI [DOI 10.5923/j.ajbe.20120203.07, 10.5923/j.ajbe.20120203.07, DOI 10.5923/J.AJBE.20120203.07]
[7]  
Haggerty CM, 2013, J MAGNETIC RESONANCE
[8]   Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming [J].
Hu, Huaifei ;
Liu, Haihua ;
Gao, Zhiyong ;
Huang, Lu .
MAGNETIC RESONANCE IMAGING, 2013, 31 (04) :575-584
[9]  
Huang S., 2010, J DIGIT IMAGING, P1, DOI DOI 10.1007/S10278-010-9315-4
[10]   Automated segmentation of the left ventricle in cardiac MRI [J].
Kaus, MR ;
von Berg, J ;
Weese, R ;
Niessen, W ;
Pekar, V .
MEDICAL IMAGE ANALYSIS, 2004, 8 (03) :245-254