IMPROVEMENT IN CORROSION RESISTANCE OF STAINLESS STEEL FOIL BY GRAPHENE COATING USING THERMAL CHEMICAL VAPOR DEPOSITION

被引:4
作者
Ruammaitree, Akkawat [1 ]
Phokharatkul, Disayut [2 ]
Nuntawong, Noppadon [2 ]
Wisitsoraat, Anurat [2 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Phys, 99 Moo 18 Phaholyothin Rd, Klongluang 12120, Prathumthani, Thailand
[2] Natl Sci & Technol Dev Agcy, Natl Elect & Comp Technol Ctr, Carbon Based Devices & Nano Elect Lab, 112 Phaholyothin Rd, Klongluang 12120, Prathumthani, Thailand
关键词
Graphene; corrosion resistance; stainless steel; chemical vapor deposition; electrical resistance; BIPOLAR PLATES; FUEL-CELL; EXFOLIATION; GROWTH; CARBON; AREA;
D O I
10.1142/S0218625X18400036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper demonstrates the growth of graphene on stainless steel foil by thermal chemical vapor deposition (CVD). Raman spectroscopy confirms that the few-layer graphene with very low deflect can be grown on stainless steel foil. Scanning electron microscope presents that the surface roughness obviously increases after graphene grows on stainless steel resulting in increase in surface area. Energy-dispersive X-ray spectroscopy reveals that there is no oxygen on the graphene surface leading to an increase in its electrical conductivity. The results of the electrochemical test indicate that the growth of graphene on stainless steel can increase corrosion resistance and restrain the formation of passive layer which reduces fuel cell efficiency. Four-point probe measurement confirms that the growth of graphene can also considerably reduce the electrical resistance of stainless steel.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
Andronico M., 5 WAYS GRAPHENE WILL
[2]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[3]   Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy [J].
Chen, Shanshan ;
Brown, Lola ;
Levendorf, Mark ;
Cai, Weiwei ;
Ju, Sang-Yong ;
Edgeworth, Jonathan ;
Li, Xuesong ;
Magnuson, Carl W. ;
Velamakanni, Aruna ;
Piner, Richard D. ;
Kang, Junyong ;
Park, Jiwoong ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (02) :1321-1327
[4]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[5]   Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment [J].
Gai, Yanzhe ;
Wang, Wucong ;
Xiao, Ding ;
Zhao, Yaping .
ULTRASONICS SONOCHEMISTRY, 2018, 41 :181-188
[6]   The growth and morphology of epitaxial multilayer graphene [J].
Hass, J. ;
de Heer, W. A. ;
Conrad, E. H. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (32)
[7]   Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy [J].
Hikku, G. S. ;
Jeyasubramanian, K. ;
Venugopal, A. ;
Ghosh, Rahul .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 716 :259-269
[8]   Few-layer epitaxial graphene with large domains on C-terminated 6H-SiC [J].
Hu, Hailong ;
Ruammaitree, Akkawat ;
Nakahara, Hitoshi ;
Asaka, Koji ;
Saito, Yahachi .
SURFACE AND INTERFACE ANALYSIS, 2012, 44 (06) :793-796
[9]   Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials [J].
Huang, Yuan ;
Sutter, Eli ;
Shi, Norman N. ;
Zheng, Jiabao ;
Yang, Tianzhong ;
Englund, Dirk ;
Gao, Hong-Jun ;
Sutter, Peter .
ACS NANO, 2015, 9 (11) :10612-10620
[10]   Synergistic oxidation of CVD graphene on Cu by oxygen plasma etching [J].
Hui, Lok Shu ;
Whiteway, Eric ;
Hilke, Michael ;
Turak, Ayse .
CARBON, 2017, 125 :500-508