Theoretical and experimental investigation of the shape memory properties of an ionic polymer-metal composite

被引:3
|
作者
Shen, Qi [1 ]
Palmre, Viljar [1 ]
Kim, Kwang J. [1 ]
Oh, Il-Kwon [2 ]
机构
[1] Univ Nevada, Mech Engn Dept, AMSL Lab, Las Vegas, NV 89154 USA
[2] Korea Adv Inst Sci & Technol, Dept Mech Engn, Creat Res Initiat Ctr Functionally Antagonist Nan, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
ionic polymer-metal composite; shape memory; actuator; Nafion; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; DYNAMIC-MODEL; ACTUATORS; PERFORMANCE; ICPF;
D O I
10.1088/1361-665X/aa61e9
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An ionic polymer-metal composite (IPMC) is typically based on a Nafion membrane with electrode plating on both sides and has a promising potential for biomimetic robotics, biomedical devices and human affinity applications. In this paper, the shape memory properties of IPMC were theoretically and experimentally studied. We presented the multiple shape memory properties of a Nafion cylinder. A physics based model of the IPMC was proposed. The free energy density theory was utilized to analyze the shape properties of the IPMC. To verify the model, IPMC samples with Nafion as the base membrane were prepared and experiments were conducted. A simulation of the model was performed and the results were compared with the experimental data. It was successfully demonstrated that the theoretical model can well explain the shape memory properties of the IPMC. The results showed that the reheat glass transition temperature of the IPMC is lower than the programming temperature. It was also found that the back-relaxation of the IPMC decreases as the programming temperature increases. The current study may be useful in order to better understand the shape memory effect of IPMC.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Modeling of an ionic polymer-metal composite ring
    Yang, Yaowen
    Zhang, Lei
    SMART MATERIALS & STRUCTURES, 2008, 17 (01):
  • [22] Ionic polymer-metal composite as energy harvesters
    Tiwari, Rashi
    Kim, Kwang J.
    Kim, Sang-Mun
    SMART STRUCTURES AND SYSTEMS, 2008, 4 (05) : 549 - 563
  • [23] The effect of ionic membrane properties on the performance of ionic polymer-metal composite (IPMC) actuator
    Jho, JY
    Han, MJ
    Park, JH
    Lee, JY
    Wang, HS
    SMART STRUCTURES AND MATERIALS 2005: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES( EAPAD), 2005, 5759 : 497 - 505
  • [24] Equivalent modeling for shape design of IPMC (Ionic Polymer-Metal Composite) as flapping actuator
    Park, HC
    Lee, S
    Kim, KJ
    ADVANCES IN FRACTURE AND STRENGTH, PTS 1- 4, 2005, 297-300 : 616 - 621
  • [25] A theoretical and experiment study for self-oscillatory ionic polymer-metal composite actuators
    Kim, Doyeon
    Kim, Kwang J.
    SMART MATERIALS AND STRUCTURES, 2007, 16 (05) : 1789 - 1795
  • [26] The mechanical properties of ionic polymer-metal composites
    Park, Il-Seok
    Kim, Sang-Mun
    Kim, Doyeon
    Kim, Kwang J.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2007, 2007, 6524
  • [27] A structure model for Ionic Polymer-Metal Composite (IPMC)
    Chang, Longfei
    Chen, Hualing
    Zhu, Zicai
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2012, 2012, 8340
  • [28] Adaptive Control for Ionic Polymer-Metal Composite Actuators
    Chen, Xinkai
    Su, Chun-Yi
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (10): : 1468 - 1477
  • [29] Robust Control for Ionic Polymer-Metal Composite Actuators
    Chen, Xinkai
    2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, : 491 - 496
  • [30] The Electromechanical Model of Ionic Polymer-Metal Composite Actuator
    Kalyonov, Vladimir E.
    Lagosh, Anton V.
    Khmelnitskiy, Ivan K.
    Broyko, Anton P.
    Korlyakov, Andrey V.
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 883 - 886