Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method

被引:26
作者
Bouremana, A. [1 ]
Guittoum, A. [2 ]
Hemmous, M. [2 ]
Martinez-Blanco, D. [3 ]
Gorria, Pedro [4 ,5 ]
Blanco, J. A. [6 ]
Benrekaa, N. [1 ]
机构
[1] USTHB, Fac Sci, LPM, Algiers, Algeria
[2] Nucl Res Ctr Algiers, Algiers, Algeria
[3] Univ Oviedo, SCTs, EPM, Mieres 33600, Spain
[4] Univ Oviedo, Dept Phys, Gijon 33203, Spain
[5] Univ Oviedo, IUTA, EPI, Gijon 33203, Spain
[6] Univ Oviedo, Dept Phys, Oviedo 33007, Spain
关键词
Magnetic materials; Nanostructures; Powder diffraction; SEM; Hysteresis; NICKEL NANOPARTICLES; NANOSTRUCTURES; PROTECTION;
D O I
10.1016/j.matchemphys.2015.05.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Powder samples containing high purity nickel nanoparticles (NPs) were prepared by hydrothermal method from Ni(II) chloride hexahydrate (NiCl2-6H(2)O) under the presence of sodium hydroxide (NaOH) with different concentrations between 5 and 25 mol/L. The synthesis of the NPs occurs through chemical reduction at relatively low temperature (140 degrees C). The Ni NPs have a face-centred cubic (fcc) crystal structure with a lattice parameter value close to that of pure Ni (a = 3.52 angstrom). The average crystallite size determined from x-ray diffraction is around 20 nm, except for the sample synthesized under the highest NaOH concentration (25 mol/L), which has the largest average size (>30 nm). The powder morphology at the sub-micrometre length scale looks like agglomerates of Ni-NPs that drastically changes their shape depending on the NaOH concentration, from flower (5 mol/L) to a dendritic-like (25 mol/L). All the samples are ferromagnetic at room temperature with saturation magnetization values between 50 and 52emu/g, and a coercive field that increases with the NaOH concentration from around 135 (5 mol/L) up to 1800e (25 mol/L). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:435 / 439
页数:5
相关论文
共 26 条
[1]   Microgel-stabilized metal nanoclusters: Size control by microgel nanomorphology [J].
Biffis, A ;
Orlandi, N ;
Corain, B .
ADVANCED MATERIALS, 2003, 15 (18) :1551-+
[2]   Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route [J].
Bouremana, A. ;
Guittoum, A. ;
Hemmous, M. ;
Rahal, B. ;
Sunol, J. J. ;
Martinez-Blanco, D. ;
Blanco, J. A. ;
Gorria, Pedro ;
Benrekaa, N. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 358 :11-15
[3]   Flower-like hierarchical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties [J].
Chen, Huiyu ;
Xu, Chunju ;
Chen, Chuang ;
Zhao, Guizhe ;
Liu, Yaqing .
MATERIALS RESEARCH BULLETIN, 2012, 47 (08) :1839-1844
[4]  
Cullity D., 2009, Introduction to Magnetic Materials, V2nd
[5]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[6]   Disorder in nanocrystalline Ni3Fe [J].
Datta, A ;
Pal, M ;
Chakravorty, D ;
Das, D ;
Chintalapudi, SN .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 205 (2-3) :301-306
[7]   Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon [J].
Gorria, Pedro ;
Sevilla, Marta ;
Blanco, Jesus A. ;
Fuertes, Antonio B. .
CARBON, 2006, 44 (10) :1954-1957
[8]   Nickel nanoparticles deposited into an activated porous carbon: synthesis, microstructure and magnetic properties [J].
Gorria, Pedro ;
Paz Fernandez-Garcia, Maria ;
Sevilla, Marta ;
Blanco, Jesus A. ;
Fuertes, Antonio B. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (01) :4-6
[9]  
Guozhong C., 2004, Nanostructures and nanomaterials: synthesis, properties and applications
[10]   Non-aqueous sol-gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers [J].
Jia, Falong ;
Zhang, Lizhi ;
Shang, Xiaoying ;
Yang, Yan .
ADVANCED MATERIALS, 2008, 20 (05) :1050-+