Targeting oncometabolism to maximize immunotherapy in malignant brain tumors

被引:9
作者
Bernstock, Joshua D. [1 ]
Kang, Kyung-Don [2 ]
Klinger, Neil, V [1 ]
Olsen, Hannah E. [1 ]
Gary, Sam [3 ]
Totsch, Stacie K. [2 ]
Ghajar-Rahimi, Gelare [3 ]
Segar, David [1 ]
Thompson, Eric M. [4 ]
Darley-Usmar, Victor [5 ]
Mott, Bryan T. [6 ]
Peruzzotti-Jametti, Luca [7 ]
Friedman, Gregory K. [2 ]
机构
[1] Brigham & Womens Hosp, Harvard Med Sch, Dept Neurosurg, 75 Francis St, Boston, MA 02115 USA
[2] Univ Alabama Birmingham, Dept Pediat, Div Pediat Hematol & Oncol, Birmingham, AL 35294 USA
[3] Univ Alabama Birmingham, Med Scientist Training Program, Birmingham, AL USA
[4] Duke Univ, Dept Neurosurg, Durham, NC USA
[5] Univ Alabama Birmingham, Dept Pathol, Birmingham, AL 35294 USA
[6] Wake Forest Baptist Med Ctr, Dept Neurosurg, Winston Salem, NC USA
[7] Univ Cambridge, Dept Clin Neurosci, Cambridge, England
基金
英国惠康基金;
关键词
CENTRAL-NERVOUS-SYSTEM; REGULATORY T-CELLS; ADJUVANT TEMOZOLOMIDE; EMERGING HALLMARKS; GLIOBLASTOMA CELLS; IMMUNE RESISTANCE; POLY-ICLC; IN-VIVO; GLUCOSE; METABOLISM;
D O I
10.1038/s41388-022-02312-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Brain tumors result in significant morbidity and mortality in both children and adults. Recent data indicate that immunotherapies may offer a survival benefit after standard of care has failed for malignant brain tumors. Modest results from several late phase clinical trials, however, underscore the need for more refined, comprehensive strategies that incorporate new mechanistic and pharmacologic knowledge. Recently, oncometabolism has emerged as an adjunct modality for combinatorial treatment approaches necessitated by the aggressive, refractory nature of high-grade glioma and other progressive malignant brain tumors. Manipulation of metabolic processes in cancer and immune cells that comprise the tumor microenvironment through controlled targeting of oncogenic pathways may be utilized to maximize the efficacy of immunotherapy and improve patient outcomes. Herein, we summarize preclinical and early phase clinical trial research of oncometabolism-based therapeutics that may augment immunotherapy by exploiting the biochemical and genetic underpinnings of brain tumors. We also examine metabolic pathways related to immune cells that target tumor cells, termed "tumor immunometabolism". Specifically, we focus on glycolysis and altered glucose metabolism, including glucose transporters, hexokinase, pyruvate dehydrogenase, and lactate dehydrogenase, glutamine, and we discuss targeting arginase, adenosine, and indoleamine 2,3-dioxygenase, and toll-like receptors. Lastly, we summarize future directions targeting metabolism in combination with emerging therapies such as oncolytic virotherapy, vaccines, and chimeric antigen receptor T cells.
引用
收藏
页码:2663 / 2671
页数:9
相关论文
共 105 条
[91]   Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase [J].
Uyttenhove, C ;
Pilotte, L ;
Théate, I ;
Stroobant, V ;
Colau, D ;
Parmentier, N ;
Boon, T ;
Van den Eynde, BJ .
NATURE MEDICINE, 2003, 9 (10) :1269-1274
[92]   Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma [J].
Velpula, Kiran K. ;
Guda, Maheedhara R. ;
Sahu, Kamlesh ;
Tuszynski, Jack ;
Asuthkar, Swapna ;
Bach, Sarah E. ;
Lathia, Justin D. ;
Tsung, Andrew J. .
ONCOTARGET, 2017, 8 (22) :35639-35655
[93]   IDO Expression in Brain Tumors Increases the Recruitment of Regulatory T Cells and Negatively Impacts Survival [J].
Wainwright, Derek A. ;
Balyasnikova, Irina V. ;
Chang, Alan L. ;
Ahmed, Atique U. ;
Moon, Kyung-Sub ;
Auffinger, Brenda ;
Tobias, Alex L. ;
Han, Yu ;
Lesniak, Maciej S. .
CLINICAL CANCER RESEARCH, 2012, 18 (22) :6110-6121
[94]   The metabolism of tumors in the body. [J].
Warburg, O ;
Wind, F ;
Negelein, E .
JOURNAL OF GENERAL PHYSIOLOGY, 1927, 8 (06) :519-530
[95]   Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial [J].
Weller, Michael ;
Butowski, Nicholas ;
Tran, David D. ;
Recht, Lawrence D. ;
Lim, Michael ;
Hirte, Hal ;
Ashby, Lynn ;
Mechtler, Laszlo ;
Goldlust, Samuel A. ;
Iwamoto, Fabio ;
Drappatz, Jan ;
O'Rourke, Donald M. ;
Wong, Mark ;
Hamilton, Mark G. ;
Finocchiaro, Gaetano ;
Perry, James ;
Wick, Wolfgang ;
Green, Jennifer ;
He, Yi ;
Turner, Christopher D. ;
Yellin, Michael J. ;
Keler, Tibor ;
Davis, Thomas A. ;
Stupp, Roger ;
Sampson, John H. .
LANCET ONCOLOGY, 2017, 18 (10) :1373-1385
[96]   Local delivery of cancer-cell glycolytic inhibitors in high-grade glioma [J].
Wicks, Robert T. ;
Azadi, Javad ;
Mangraviti, Antonella ;
Zhang, Irma ;
Hwang, Lee ;
Joshi, Avadhut ;
Bow, Hansen ;
Hutt-Cabezas, Marianne ;
Martin, Kristin L. ;
Rudek, Michelle A. ;
Zhao, Ming ;
Brem, Henry ;
Tyler, Betty M. .
NEURO-ONCOLOGY, 2015, 17 (01) :70-80
[97]   Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor [J].
Wu, Jing-Yiing ;
Huang, Tsai-Wang ;
Hsieh, Yi-Ting ;
Wang, Yi-Fu ;
Yen, Chia-Chien ;
Lee, Guan-Lin ;
Yeh, Chang-Ching ;
Peng, Yi-Jen ;
Kuo, Ya-Yi ;
Wen, Hsiu-Ting ;
Lin, Hui-Chen ;
Hsiao, Cheng-Wen ;
Wu, Kenneth K. ;
Kung, Hsing-Jien ;
Hsu, Yu-Juei ;
Kuo, Cheng-Chin .
MOLECULAR CELL, 2020, 77 (02) :213-+
[98]   Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas [J].
Xu, Shuo ;
Shao, Qian-Qian ;
Sun, Jin-Tang ;
Yang, Ning ;
Xie, Qi ;
Wang, Dong-Hai ;
Huang, Qi-Bing ;
Huang, Bin ;
Wang, Xin-Yu ;
Li, Xin-Gang ;
Qu, Xun .
NEURO-ONCOLOGY, 2013, 15 (09) :1160-1172
[99]   CD73 Promotes Glioblastoma Pathogenesis and Enhances Its Chemoresistance via A2B Adenosine Receptor Signaling [J].
Yan, Angela ;
Joachims, Michelle L. ;
Thompson, Linda F. ;
Miller, Andrew D. ;
Canoll, Peter D. ;
Bynoe, Margaret S. .
JOURNAL OF NEUROSCIENCE, 2019, 39 (22) :4387-4402
[100]  
Yuen Carlen A, 2016, CNS Oncol, V5, P101, DOI 10.2217/cns-2015-0006