Self-passivating W-Cr-Y alloys: Characterization and testing

被引:34
作者
Calvo, Aida [1 ,2 ]
Garcla-Rosales, Carmen [1 ,2 ]
Ordas, Nerea [1 ,2 ]
Iturriza, Inigo [1 ,2 ]
Schlueter, Karsten [3 ]
Koch, Freimut [3 ]
Pintsuk, Gerald [4 ]
Tejado, Elena [5 ]
Ygnacio Pastor, Jose [5 ]
机构
[1] Univ Navarra, Ceit IK4, E-20018 San Sebastian, Spain
[2] Univ Navarra, TECNUN, E-20018 San Sebastian, Spain
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[4] Forschungszentrum Julich, D-52425 Julich, Germany
[5] Univ Politecn Madrid, E-28040 Madrid, Spain
关键词
Tungsten; Self-passivating alloy; Oxidation behavior; Yttrium; Thermo-shock; OXIDATION BEHAVIOR; TUNGSTEN ALLOYS; MICROSTRUCTURE;
D O I
10.1016/j.fusengdes.2017.03.001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The use of self-passivating tungsten alloys for the first wall armor of future fusion reactors is advantageous concerning safety issues in comparison with pure tungsten. Bulk W-10Cr-0.5Y alloy manufactured by mechanical alloying followed by HIP resulted in a fully dense material with grain size around 100 nm and a dispersion of Y-rich oxide nanoparticles located at the grain boundaries. An improvement in flexural strength and fracture toughness was observed with respect to previous works. Oxidation tests under isothermal and accident-like conditions revealed a very promising oxidation behavior for the W-10Cr-0.5Y alloy. Thermo-shock tests at JUDITH-1 to simulate ELM-like loads resulted in a crack network at the surface with roughness values lower than those of a pure W reference material. An additional thermal treatment at 1550 degrees C improves slightly the oxidation and significantly thermo-shock resistance of the alloy. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1118 / 1121
页数:4
相关论文
共 25 条
[1]   Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices [J].
Arbeiter, Frederik ;
Bachmann, Christian ;
Chen, Yuming ;
Ilic, Milica ;
Schwab, Florian ;
Sieglin, Bernhard ;
Wenninger, Ronald .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1123-1129
[2]  
Banhart J, 1984, B ALLOY PHASE DIAGR, V5, P21, DOI [10.1007/BF02868712, DOI 10.1007/BF02868712]
[3]   Development of tungsten and tungsten alloys for DEMO divertor applications via MIM technology [J].
Blagoeva, D. T. ;
Opschoor, J. ;
van der Laan, J. G. ;
Sarbu, C. ;
Pintsuk, G. ;
Jong, M. ;
Bakker, T. ;
Ten Pierick, P. ;
Nolles, H. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S198-S203
[4]   Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes [J].
Calvo, A. ;
Ordas, N. ;
Iturriza, I. ;
Pastor, J. Y. ;
Tejado, E. ;
Palacios, T. ;
Garcia Rosaies, C. .
PHYSICA SCRIPTA, 2016, T167
[5]  
Calvo A., 2016, NUCL MAT ENERGY, P1
[6]  
Duwe R., 1994, FUSION TECHNOL, V1995, P355, DOI DOI 10.1016/B978-0-444-82220-8.50057-1
[7]   Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing [J].
Garcia-Rosales, C. ;
Lopez-Ruiz, P. ;
Alvarez-Martin, S. ;
Calvo, A. ;
Ordas, N. ;
Koch, F. ;
Brinkmann, J. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :1611-1616
[8]   Influence of impurities on the fracture behaviour of tungsten [J].
Gludovatz, B. ;
Wurster, S. ;
Weingaertner, T. ;
Hoffmann, A. ;
Pippan, R. .
PHILOSOPHICAL MAGAZINE, 2011, 91 (22) :3006-3020
[9]   Stress intensity factor, compliance and CMOD for a general three-point-bend beam [J].
Guinea, GV ;
Pastor, JY ;
Planas, J ;
Elices, M .
INTERNATIONAL JOURNAL OF FRACTURE, 1998, 89 (02) :103-116
[10]   Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material [J].
Koch, F. ;
Brinkmann, J. ;
Lindig, S. ;
Mishra, T. P. ;
Linsmeier, Ch .
PHYSICA SCRIPTA, 2011, T145