Generalized Weierstrass representation for surfaces in multi-dimensional Riemann spaces

被引:31
作者
Konopelchenko, BG [1 ]
Landolfi, G
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[2] Ist Nazl Fis Nucl, Sezione Lecce, I-73100 Lecce, Italy
关键词
integrable deformation of surfaces; generalized Weierstrass representation; Riemann spaces;
D O I
10.1016/S0393-0440(98)00046-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalizations of the Weierstrass formulae to surface immersed into R-4, S-4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed. (C) 1999 Elsevier Science B.V. All rights reserved. Subj. Class.: Differential geometry 1991 MSC: 53B20; 58B20.
引用
收藏
页码:319 / 333
页数:15
相关论文
共 31 条
[1]  
ABRESCH U, 1989, SPINOR REPRESENTATIO
[2]  
[Anonymous], 1996, FLUCTUATING GEOMETRI
[3]   KLEINIAN GEOMETRY AND THE N=2 SUPERSTRING [J].
BARRETT, J ;
GIBBONS, GW ;
PERRY, MJ ;
POPE, CN ;
RUBACK, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (09) :1457-1493
[4]  
BIANCHI L, 1902, LEZIONI GEOMETRIA DI
[5]   ALL CONSTANT MEAN-CURVATURE TORI IN R3,S-3,H-3 IN TERMS OF THETA-FUNCTIONS [J].
BOBENKO, AI .
MATHEMATISCHE ANNALEN, 1991, 290 (02) :209-245
[6]  
BOBENKO AI, 1994, HARMONIC MAPS INTEGR
[7]   Generalized Weierstrass-Enneper inducing, conformal immersions, and gravity [J].
Carroll, R ;
Konopelchenko, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (07) :1183-1216
[8]  
CHERN SS, 1985, DIFFERENTIAL GEOMETR
[9]  
DARBOUX G, 1877, LECONS THEORIE SURFA, V1
[10]  
EISENHART L. P., 1909, A Treatise on the Differential Geometry of Curves and Surfaces