Doping-dependent superconducting gap anisotropy in the two-dimensional pnictide Ca10(Pt3As8)[(Fe1-xPtx)2As2]5

被引:48
作者
Cho, K. [1 ]
Tanatar, M. A. [1 ]
Kim, H. [1 ,2 ]
Straszheim, W. E. [1 ]
Ni, N. [3 ]
Cava, R. J. [3 ]
Prozorov, R. [1 ,2 ]
机构
[1] Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
关键词
D O I
10.1103/PhysRevB.85.020504
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The characteristic features of the Ca-10(Pt3As8)[(Fe1-xPtx)(2)As-2](5) (the "10-3-8" phase) superconductor are triclinic symmetry, high anisotropy, and a clear separation of superconducting and antiferromagnetic regions in the T versus doping (x) phase diagram, which enables the superconducting gap to be studied without complications due to the coexisting magnetic order. The London penetration depth, measured on the underdoped side of the superconducting "dome" (x = 0.028, 0.041, 0.042, and 0.097), shows behavior remarkably similar to other Fe-based superconductors, exhibiting a robust power law, Delta lambda (T) = AT(n). The exponent n decreases from 2.36 (x = 0.097, close to the optimal doping) to 1.7 (x = 0.028, a heavily underdoped composition), suggesting that the superconducting gap becomes more anisotropic at the dome edge. A similar trend is found in the lower anisotropy BaFe2As2 ("122")-based superconductors, implying that it is an intrinsic property, unrelated to the coexistence of magnetic order and superconductivity or the anisotropy of the normal state.
引用
收藏
页数:4
相关论文
共 32 条
[1]   Jump in specific heat at the superconducting transition temperature in Ba(Fe1-xCox)2As2 and Ba(Fe1-xNix)2As2 single crystals [J].
Bud'ko, Sergey L. ;
Ni, Ni ;
Canfield, Paul C. .
PHYSICAL REVIEW B, 2009, 79 (22)
[2]  
Chubukov A. V., ANN REV MAT IN PRESS
[3]   Doping evolution of the absolute value of the London penetration depth and superfluid density in single crystals of Ba(Fe1-xCox)2As2 [J].
Gordon, R. T. ;
Kim, H. ;
Salovich, N. ;
Giannetta, R. W. ;
Fernandes, R. M. ;
Kogan, V. G. ;
Prozorov, T. ;
Bud'ko, S. L. ;
Canfield, P. C. ;
Tanatar, M. A. ;
Prozorov, R. .
PHYSICAL REVIEW B, 2010, 82 (05)
[4]   London penetration depth and strong pair breaking in iron-based superconductors [J].
Gordon, R. T. ;
Kim, H. ;
Tanatar, M. A. ;
Prozorov, R. ;
Kogan, V. G. .
PHYSICAL REVIEW B, 2010, 81 (18)
[5]   Iron-based superconductors at high magnetic fields [J].
Gurevich, A. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (12)
[6]   Gap symmetry and structure of Fe-based superconductors [J].
Hirschfeld, P. J. ;
Korshunov, M. M. ;
Mazin, I. I. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (12)
[7]   The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides [J].
Johnston, David C. .
ADVANCES IN PHYSICS, 2010, 59 (06) :803-1061
[8]   Superconductivity at 38K in Iron-Based Compound with Platinum-Arsenide Layers Ca10(Pt4As8)(Fe2-xPtxAs2)5 [J].
Kakiya, Satomi ;
Kudo, Kazutaka ;
Nishikubo, Yoshihiro ;
Oku, Kenta ;
Nishibori, Eiji ;
Sawa, Hiroshi ;
Yamamoto, Takahisa ;
Nozaka, Toshio ;
Nohara, Minoru .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (09)
[9]  
Kim H., ARXIV11052265
[10]   Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor [J].
Kogan, V. G. ;
Martin, C. ;
Prozorov, R. .
PHYSICAL REVIEW B, 2009, 80 (01)