On Properties of the Bimodal Skew-Normal Distribution and an Application

被引:8
作者
Elal-Olivero, David [1 ]
Olivares-Pacheco, Juan F. [1 ]
Venegas, Osvaldo [2 ]
Bolfarine, Heleno [3 ]
Gomez, Hector W. [4 ]
机构
[1] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo 1530000, Chile
[2] Univ Catolica Temuco, Fac Ingn, Dept Ciencias Matemat & Fis, Temuco 4780000, Chile
[3] Univ Sao Paulo, Inst Matemat & Estat IME, BR-05508090 Sao Paulo, Brazil
[4] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta 1240000, Chile
关键词
bimodal; simulation; skew-normal distribution; stochastic representation; INFERENCE; EXTENSION;
D O I
10.3390/math8050703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main object of this paper is to develop an alternative construction for the bimodal skew-normal distribution. The construction is based upon a study of the mixture of skew-normal distributions. We study some basic properties of this family, its stochastic representations and expressions for its moments. Parameters are estimated using the maximum likelihood estimation method. A simulation study is carried out to observe the performance of the maximum likelihood estimators. Finally, we compare the efficiency of the new distribution with other distributions in the literature using a real data set. The study shows that the proposed approach presents satisfactory results.
引用
收藏
页数:16
相关论文
共 37 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Statistical inference for a general class of asymmetric distributions [J].
Arellano-Valle, RB ;
Gómez, HW ;
Quintana, FA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) :427-443
[3]  
Arellano-Valle RB, 2004, COMMUN STAT-THEOR M, V33, P1465, DOI [10.1081/STA-120037254, 10.1081/sta-120037254]
[4]   An Extension of the Epsilon-Skew-Normal Distribution [J].
Arellano-Valle, Reinaldo B. ;
Cortes, Milton A. ;
Gomez, Hector W. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (05) :912-922
[5]   A doubly skewed normal distribution [J].
Arnold, Barry C. ;
Gomez, Hector W. ;
Salinas, Hugo S. .
STATISTICS, 2015, 49 (04) :842-858
[6]   On multiple constraint skewed models [J].
Arnold, Barry C. ;
Gomez, Hector W. ;
Salinas, Hugo S. .
STATISTICS, 2009, 43 (03) :279-293
[7]   THE NONTRUNCATED MARGINAL OF A TRUNCATED BIVARIATE NORMAL-DISTRIBUTION [J].
ARNOLD, BC ;
BEAVER, RJ ;
GROENEVELD, RA ;
MEEKER, WQ .
PSYCHOMETRIKA, 1993, 58 (03) :471-488
[8]   The skew-normal distribution and related multivariate families [J].
Azzalini, A .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) :159-188
[9]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[10]   Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :367-389