A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations

被引:3
作者
Hou, Tianliang [2 ]
Chen, Yanping [1 ]
Huang, Yunqing [2 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Dept Math, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
A posteriori error estimates; quadratic optimal control problems; parabolic equations; mixed finite element methods; FINITE-ELEMENT APPROXIMATION; BOUNDARY CONTROL-PROBLEMS;
D O I
10.4208/nmtma.2011.m1017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
引用
收藏
页码:439 / 458
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[3]  
Babuska I., 2001, NUMER MATH SCI COMP
[4]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[5]  
Brezzi F., 1991, MIXED HYBRID FINITE, V95, P65
[6]   Finite element methods for optimal control problems governed by integral equations and integro-differential equations [J].
Brunner, H ;
Yan, NN .
NUMERISCHE MATHEMATIK, 2005, 101 (01) :1-27
[7]   A posteriori error estimate for the mixed finite element method [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :465-476
[8]   Superconvergence of quadratic optimal control problems by triangular mixed finite element methods [J].
Chen, Yanping .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (08) :881-898
[9]   A posteriori error estimates for mixed finite element solutions of convex optimal control problems [J].
Chen, Yanping ;
Liu, Wenbin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 211 (01) :76-89
[10]   A POSTERIORI ERROR ESTIMATES OF MIXED METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS [J].
Chen, Yanping ;
Liu, Lingli ;
Lu, Zuliang .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) :1135-1157