Global solutions for the gravity water waves equation in dimension 3

被引:217
作者
Germain, P. [1 ]
Masmoudi, N. [1 ]
Shatah, J. [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
WELL-POSEDNESS; SURFACE-TENSION; SOBOLEV SPACES; MOTION; FLUID;
D O I
10.4007/annals.2012.175.2.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show existence of global solutions for the gravity water waves equation in dimension 3, in the case of small data. The proof combines energy estimates, which yield control of L-2 related norms, with dispersive estimates, which give decay in L-infinity. To obtain these dispersive estimates, we use an analysis in Fourier space; the study of space and time resonances is then the crucial point.
引用
收藏
页码:691 / 754
页数:64
相关论文
共 31 条
[1]  
Ambrose DM, 2007, COMMUN MATH SCI, V5, P391
[2]   The Zero Surface Tension Limit of Three-dimensional Water Waves [J].
Ambrose, David M. ;
Masmoudi, Nader .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) :479-521
[3]  
[Anonymous], 1995, INTRO PARTIAL DIFFER
[4]   GROWTH-RATES FOR THE LINEARIZED MOTION OF FLUID INTERFACES AWAY FROM EQUILIBRIUM [J].
BEALE, JT ;
HOU, TY ;
LOWENGRUB, JS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1269-1301
[5]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.3.CO
[6]  
2-H
[7]  
CHRISTODOULOU D., 1986, COMMUN PUR APPL MATH, V39, P267
[8]  
COIFMAN R. R., 1978, ASTERISQUE, V57
[9]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[10]   AN EXISTENCE THEORY FOR WATER-WAVES AND THE BOUSSINESQ AND KORTEWEG-DEVRIES SCALING LIMITS [J].
CRAIG, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (08) :787-1003