Regularity of pullback attractors for nonautonomous nonclassical diffusion equations

被引:18
作者
Wang, Yonghai [1 ]
Zhu, Zilong [1 ]
Li, Pengrui [1 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonclassical diffusion equation; Pullback attractor; Regularity; DAMPED WAVE-EQUATION; GLOBAL ATTRACTORS; ASYMPTOTIC REGULARITY; HEAT-CONDUCTION; R-N; DYNAMICS; EXPONENT; MEMORY;
D O I
10.1016/j.jmaa.2017.10.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the regularity of pullback attractors for a nonautonomous nonclassical diffusion equation with critical nonlinearity. In particular, under suitable assumptions, we prove that there exists a pullback attractor A = {A(t)}(t is an element of R) in H-0(1)(Omega) for a nonautonomous nonclassical diffusion equation, and for each t is an element of R, A(t) is bounded in H-2 (Omega) boolean AND H-0(1)(Omega). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 31
页数:16
相关论文
共 28 条
  • [11] DYNAMICS OF NON-AUTONOMOUS NONCLASSICAL DIFFUSION EQUATIONS ON Rn
    Cung The Anh
    Tang Quoc Bao
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1231 - 1252
  • [12] Pullback attractors for a class of non-autonomous nonclassical diffusion equations
    Cung The Anh
    Tang Quoc Bao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 399 - 412
  • [13] Fabrie P, 2004, DISCRETE CONT DYN-A, V10, P211
  • [14] Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    [J]. NONLINEARITY, 2012, 25 (04) : 905 - 930
  • [15] QUASILINEAR EVOLUTION-EQUATIONS IN NONCLASSICAL DIFFUSION
    KUTTLER, K
    AIFANTIS, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) : 110 - 120
  • [16] Global Attractors in H1(RN) for Nonclassical Diffusion Equations
    Ma, Qiao-zhen
    Liu, Yong-feng
    Zhang, Fang-hong
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [17] Peter J. G., 1968, Z ANGE MATH PHYS, V19, P614
  • [18] TIME DEPENDENT PERTURBATION IN A NON-AUTONOMOUS NON-CLASSICAL PARABOLIC EQUATION
    Rivero, Felipe
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 209 - 221
  • [19] Global attractors for a nonclassical diffusion equation
    Sun, Chun You
    Wang, Su Yun
    Zhong, Cheng Kui
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (07) : 1271 - 1280
  • [20] Dynamics of the nonclassical diffusion equations
    Sun, Chunyou
    Yang, Meihua
    [J]. ASYMPTOTIC ANALYSIS, 2008, 59 (1-2) : 51 - 81